The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cloning of the human mitochondrial 51 kDa subunit (NDUFV1) reveals a 100% antisense homology of its 3'UTR with the 5'UTR of the gamma-interferon inducible protein (IP-30) precursor: is this a link between mitochondrial myopathy and inflammation?

We report the cloning of the genomic and cDNA of the human 51 kDa subunit (NDUFV1) of mitochondrial complex I. The 6 kbp NDUFV1 gene is composed of 10 exons. All intron-exon boundaries comply to the consensus sequence for splice donor and acceptor sites. Within the 5' flanking region we identified a putative binding site for NRF-2, a GATA- and GC-box element. Canonical TATA- or CCAAT-boxes were absent, the transcriptional start site, however, lies within a CpG island, which is consistent with the "housekeeping" function of the gene. Within the coding sequence we detected consensus motifs for NADH, FMN, and iron-sulfur binding sites. The amino acid sequence homology between human and cow is 96.9%. Surprisingly we found a 48 bp long complete antisense homology between the 3'UTR of the NDUFV1-mRNA and the 5'UTR of the mRNA for the gamma-interferon inducible protein precursor (IP-30). This finding is intriguing since both genes lie on different chromosomes. The exact function of IP-30 is not yet known, but it may play a role in gamma-interferon mediated immune reactions. The NDUFV1-mRNA might act as an antisense suppresser, thus restraining translation of IP-30 in tissues with high energy demand. This finding could be a molecular link between complex I deficiency and inflammatory myopathy which have been repeatedly described to occur together.[1]

References

 
WikiGenes - Universities