The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Allosteric regulation of pyruvate kinase M2 isozyme involves a cysteine residue in the intersubunit contact.

Pyruvate kinase M2 isozyme mutants with amino acid substitutions in the subunit interface were prepared and characterized. The substitutions were made in the allosteric M2 isozyme by the corresponding residues of the nonallosteric M1 isozyme to identify the residue involved in the allosteric effects. The replacement of Cys-423 by Leu led to substantial loss of both homotropic and heterotropic allosteric effects while the substitutions at Phe-389, Arg-398, Ala-401, Pro-402, Thr-408, and Ile-427 did not. The altered kinetic properties of the Cys-423-substituted mutant resulted from the shift of the allosteric transition toward the active R-state since the mutant exhibits the allosteric properties in the presence of an allosteric inhibitor, L-phenylalanine. The inverse correlation between the hydrophobicity of residue 423 and the extent of stabilization of the R-state was found by analysis of mutants with un-ionizable amino acids at position 423. Furthermore, the modification of Cys-423 with methyl methanethiosulfonate led to a shift of the allosteric transition toward the R-state, probably the result of increased hydrophobicity of the residue. These results suggest that Cys-423 is involved in the allosteric regulation of the enzyme through hydrophobic interactions.[1]

References

 
WikiGenes - Universities