Growth-regulatory activity of the growth arrest-specific gene, GAS1, in NIH3T3 fibroblasts.
The growth arrest-specific gene, Gas-1, is preferentially expressed in quiescent NIH3T3 cells and inhibits DNA synthesis, suggesting that Gas-1 may be a tumor suppressor gene. When GAS1 cDNA, under the control of the strong constitutive CMV promoter, was transfected into NIH3T3 cells, no stable transfectant cell lines were produced, confirming that high levels of expression of GAS1 mRNA inhibit proliferation. GAS1, under the control of a dexamethasone-inducible promoter, was also transfected into NIH3T3 cells, resulting in normal numbers of transfectant clones. When expression of GAS1 mRNA was induced with dexamethasone, the growth rate was greatly inhibited. Morphological changes characteristic of growth arrest were also observed. To determine if antisense inhibition of expression of Gas-1 will transform normal fibroblasts, GAS1 cDNA, cloned in the antisense orientation, was transfected into NIH3T3 cells and expression of endogenous Gas-1 mRNA was inhibited. The GAS1-antisense cells had altered morphology and grew to a much higher saturation density than control cell lines with a loss of contact inhibition. However, there was no change in requirements for serum or any development of anchorage-independence. Antisense inhibition of expression of GAS1 is therefore insufficient to transform the cells, suggesting that additional genetic events are required for a fully malignant phenotype.[1]References
- Growth-regulatory activity of the growth arrest-specific gene, GAS1, in NIH3T3 fibroblasts. Evdokiou, A., Cowled, P.A. Exp. Cell Res. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg