The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Nuclear protein import, but not mRNA export, is defective in all Saccharomyces cerevisiae mutants that produce temperature-sensitive forms of the Ran GTPase homologue Gsp1p.

A series of ts mutations in the GSP1 gene of Saccharomyces cerevisiae was isolated by error-prone PCR. A total of 25 ts gsp1 strains was obtained. Each of these mutants showed between one and seven different amino acid alterations. In several of these ts gsp1 strains, the same amino acid residues in Gsp1p were repeatedly mutated, indicating that our screen for ts gsp1 mutations was saturating. All of the ts gsp1 strains isolated had a defect in nuclear protein import, but only 16 of the 25 ts gsp1 strains had a defect in mRNA export. Thus, Gsp1p is suggested to be directly involved in nuclear protein import, but not in mRNA export. Following release from alpha-factor arrest, 11 of the ts gsp1 mutants arrested in G1; the remainder did not show any specific cell-cycle arrest, at 37 degrees C, the nonpermissive temperature. While the mutants that are defective in both mRNA export and protein import have a tendency to arrest in G1, there was no clear correlation between the cell cycle phenotype and the defects in mRNA export and nuclear protein import. Based on this, we assume that Ran/Gsp1p GTPase regulates the cell cycle and the nucleus/cytosol exchange of macromolecules through interactions with effectors that were independent of each other, and are differentially affected by mutation.[1]

References

 
WikiGenes - Universities