The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Successful treatment of human chronic lymphocytic leukemia xenografts with combination biological agents auristatin PE and bryostatin 1.

We tested the activity of dolastatin 10 (a natural product derived from the shell-less marine mollusk, Dolabella auricularia, a sea hare) and its structural modification, auristatin PE, alone and in combination with bryostatin 1 (a protein kinase C activator derived from the marine bryozoan Bugula neritina) on a human B-cell chronic lymphocytic leukemia cell line (WSU-CLL) and in a severe combined immune deficient (SCID) mouse xenograft model bearing this cell line. WSU-CLL cells were cultured in RPMI 1640 at a concentration of 2 x 10(5)/ml using a 24-well plate. Agents were added to triplicate wells, and cell count, viability, mitosis, and apoptosis were assessed after 24 h of incubation at 37 degrees C. Results showed that dolastatin 10 had no apparent inhibition of cell growth at concentrations less than 500 pg/ml. Auristatin PE, on the other hand, showed significant growth inhibition at concentrations as low as 50 pg/ml. Auristatin PE-treated cultures, at this concentration, exhibited 27 and 4.5% mitosis and apoptosis, respectively. Dolastatin 10, at the same concentration, did not exert any effect and was comparable with that of control cultures. In the WSU-CLL-SCID mouse xenograft model, the efficacy of these agents alone and in combination with bryostatin 1 was evaluated. Tumor growth inhibition (T/C), tumor growth delay (T-C), and log10 kill for dolastatin 10, auristatin PE, and bryostatin 1 were 14%, 25 days, and 1.98; 2%, 25 days, and 1.98; 19%, 13 days, and 1.03, respectively. Auristatin-PE produced cure in three of five mice, whereas dolastatin 10 showed activity but no cures. When given in combination, auristatin PE + bryostatin 1-treated animals were all free of tumors (five of five) for 150 days and were considered cured. Dolastatin 10 + bryostatin 1-treated animals produced cure in only two of five mice. We conclude that: (a) auristatin-PE is more effective in this model than dolastatin 10; (b) auristatin PE can be administered at a concentration 10 times greater than dolastatin 10; (c) there is a synergetic effect between these agents and bryostatin 1, which is more apparent in the bryostatin 1 + auristatin PE combination. The use of these agents should be explored clinically in the treatment of CLL.[1]


  1. Successful treatment of human chronic lymphocytic leukemia xenografts with combination biological agents auristatin PE and bryostatin 1. Mohammad, R.M., Varterasian, M.L., Almatchy, V.P., Hannoudi, G.N., Pettit, G.R., Al-Katib, A. Clin. Cancer Res. (1998) [Pubmed]
WikiGenes - Universities