The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Transplantation, Heterologous

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Transplantation, Heterologous

 

High impact information on Transplantation, Heterologous

  • Here, we show that expression of PAR1 is both required and sufficient to promote growth and invasion of breast carcinoma cells in a xenograft model [5].
  • A human bronchial xenograft model was used to characterize the molecular basis for the previously described defect in bacterial killing that is present in the cystic fibrosis (CF) lung [6].
  • A neutralizing antibody to IL-8 substantially inhibited angiogenesis and tumor growth in DLD-1(HIF-kd) but not DLD-1(HIF-wt) xenografts, verifying the functional significance of this IL-8 response [7].
  • Xenografts remained highly vascularized with microvessel densities identical to DLD-1 tumors that had wild-type HIF-1alpha (DLD-1(HIF-wt)) [7].
  • We have achieved life-supporting pig-to-baboon renal xenograft survivals of up to 83 d with normal creatinine levels [8].
 

Chemical compound and disease context of Transplantation, Heterologous

  • Doxorubicin (DXR) conjugated to a monoclonal antibody (MAb), 9.2.27, which recognizes a human melanoma-associated proteoglycan, effectively suppresses the growth of human melanoma xenografts and prolongs the life span of tumor-bearing athymic nude (nu/nu) mice [9].
  • PURPOSE: A novel in vivo (i.e., xenograft) model was developed to determine to what degree DCIS lesions depend on estrogen for growth [10].
  • PURPOSE: We examined the antitumor activity of combination treatment with the anti-P-glycoprotein monoclonal antibody MRK-16, a cyclosporin derivative (either cyclosporin A [CsA] or PSC 833), and the anticancer drug Adriamycin (ADM) against human colorectal carcinoma cells in vitro and established xenografts of these cells in vivo [11].
  • The effects of dexamethasone (thrice weekly injections of 1 microg/mouse) on DU145 xenografts in nude and severe combined immunodeficient (SCID) mice were evaluated [12].
  • The effect of imatinib oral therapy (every 12 hours for 5-7 days) on primary tumor growth was assessed in Ewing's sarcoma xenografts in SCID/bg mice (5 or 10 mice per group) [13].
 

Biological context of Transplantation, Heterologous

 

Anatomical context of Transplantation, Heterologous

  • In addition, MEN 10755 exhibited striking antitumor activity in the treatment of human tumor xenografts, including those of the doxorubicin-resistant breast carcinoma cell line MX-1 [18].
  • Mice homozygous for the mutation "severe combined immune deficiency" (C.B17-scid/scid) lack functional T and B lymphocytes and readily accept tumor xenografts [19].
  • The in vivo growth behavior and invasive potential of normal and "immortalized" human bronchial epithelial cells were studied by xenotransplantation procedures, an in vitro assay of invasiveness, and determinations of type IV collagenase activity and mRNA expression [20].
  • We describe a novel genetic strategy for reversing the CF-specific defect of antimicrobial activity by transferring a gene encoding a secreted cathelicidin peptide antibiotic into the airway epithelium grown in a human bronchial xenograft model [21].
  • Differential localization of human pancreas cancer-associated antigen and carcinoembryonic antigen in homologous pancreatic tumoral xenograft [22].
 

Associations of Transplantation, Heterologous with chemical compounds

  • Antitumoral efficacy was documented following intratumoral or intravenous administration of ONYX-015 to nude mouse-human tumor xenografts; efficacy with ONYX-015 plus chemotherapy (cisplatin, 5-fluorouracil) was significantly greater than with either agent alone [23].
  • Using bioluminescence imaging after one dose of the chemo-therapeutic proteasome inhibitor bortezomib (PS-341), proteasome function in tumor xenografts was blocked within 30 min and returned to nearly baseline by 46 h [24].
  • Cytotoxicity of cisplatin and cisdiammine-1,1-cyclobutane dicarboxylate in MGH-U1 cells grown as monolayers, spheroids, and xenografts [25].
  • Cyclophosphamide (CY), known as an immunosuppressive agent, was injected ip at a dose of 100 mg/kg 24 hours prior to subcutaneous implantation of tumor fragments obtained from established xenograft lines or from patients [26].
  • Evaluation of cyclosporine-treated mice as hosts for growing and testing the chemosensitivity of first-transplant-generation human tumor xenografts implanted under the kidney capsule [27].
 

Gene context of Transplantation, Heterologous

  • Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts [28].
  • Forced expression of HIF-1alpha in p53-expressing tumor cells increases hypoxia-induced VEGF expression and augments neovascularization and growth of tumor xenografts [29].
  • CCR5 blockade significantly enhanced proliferation of xenografts from tumor cells bearing wild-type p53, but did not affect proliferation of tumor xenografts bearing a p53 mutation [30].
  • VEGF monoclonal antibody administration in tumor-bearing athymic mice led to a dose- and time-dependent inhibition of growth of subcutaneous xenografts and to a marked reduction in the number and size of experimental liver metastases [31].
  • Moreover, treatment of MUC1-positive, but not MUC1-negative, xenografts with a single injection of Ad.DF3-E1/CMV-TNF was effective in inducing stable tumor regression [32].
 

Analytical, diagnostic and therapeutic context of Transplantation, Heterologous

References

  1. Gene therapy in a xenograft model of cystic fibrosis lung corrects chloride transport more effectively than the sodium defect. Goldman, M.J., Yang, Y., Wilson, J.M. Nat. Genet. (1995) [Pubmed]
  2. Interleukin-4 receptor-directed cytotoxin therapy of AIDS-associated Kaposi's sarcoma tumors in xenograft model. Husain, S.R., Kreitman, R.J., Pastan, I., Puri, R.K. Nat. Med. (1999) [Pubmed]
  3. DNA topoisomerase I--targeted chemotherapy of human colon cancer in xenografts. Giovanella, B.C., Stehlin, J.S., Wall, M.E., Wani, M.C., Nicholas, A.W., Liu, L.F., Silber, R., Potmesil, M. Science (1989) [Pubmed]
  4. Effect of dehydroepiandrosterone and the antiestrogen EM-800 on growth of human ZR-75-1 breast cancer xenografts. Couillard, S., Labrie, C., Bélanger, A., Candas, B., Pouliot, F., Labrie, F. J. Natl. Cancer Inst. (1998) [Pubmed]
  5. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Boire, A., Covic, L., Agarwal, A., Jacques, S., Sherifi, S., Kuliopulos, A. Cell (2005) [Pubmed]
  6. Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Goldman, M.J., Anderson, G.M., Stolzenberg, E.D., Kari, U.P., Zasloff, M., Wilson, J.M. Cell (1997) [Pubmed]
  7. Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Mizukami, Y., Jo, W.S., Duerr, E.M., Gala, M., Li, J., Zhang, X., Zimmer, M.A., Iliopoulos, O., Zukerberg, L.R., Kohgo, Y., Lynch, M.P., Rueda, B.R., Chung, D.C. Nat. Med. (2005) [Pubmed]
  8. Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Yamada, K., Yazawa, K., Shimizu, A., Iwanaga, T., Hisashi, Y., Nuhn, M., O'Malley, P., Nobori, S., Vagefi, P.A., Patience, C., Fishman, J., Cooper, D.K., Hawley, R.J., Greenstein, J., Schuurman, H.J., Awwad, M., Sykes, M., Sachs, D.H. Nat. Med. (2005) [Pubmed]
  9. Pharmacokinetics and mechanism of action of a doxorubicin-monoclonal antibody 9.2.27 conjugate directed to a human melanoma proteoglycan. Yang, H.M., Reisfeld, R.A. J. Natl. Cancer Inst. (1988) [Pubmed]
  10. Assessment of hormone dependence of comedo ductal carcinoma in situ of the breast. Holland, P.A., Knox, W.F., Potten, C.S., Howell, A., Anderson, E., Baildam, A.D., Bundred, N.J. J. Natl. Cancer Inst. (1997) [Pubmed]
  11. Regression of established tumors expressing P-glycoprotein by combinations of adriamycin, cyclosporin derivatives, and MRK-16 antibodies. Watanabe, T., Naito, M., Kokubu, N., Tsuruo, T. J. Natl. Cancer Inst. (1997) [Pubmed]
  12. Potential mechanism for the effects of dexamethasone on growth of androgen-independent prostate cancer. Nishimura, K., Nonomura, N., Satoh, E., Harada, Y., Nakayama, M., Tokizane, T., Fukui, T., Ono, Y., Inoue, H., Shin, M., Tsujimoto, Y., Takayama, H., Aozasa, K., Okuyama, A. J. Natl. Cancer Inst. (2001) [Pubmed]
  13. Potential use of imatinib in Ewing's Sarcoma: evidence for in vitro and in vivo activity. Merchant, M.S., Woo, C.W., Mackall, C.L., Thiele, C.J. J. Natl. Cancer Inst. (2002) [Pubmed]
  14. Activity of a novel bcl-2/bcl-xL-bispecific antisense oligonucleotide against tumors of diverse histologic origins. Gautschi, O., Tschopp, S., Olie, R.A., Leech, S.H., Simões-Wüst, A.P., Ziegler, A., Baumann, B., Odermatt, B., Hall, J., Stahel, R.A., Zangemeister-Wittke, U. J. Natl. Cancer Inst. (2001) [Pubmed]
  15. Reversal of drug resistance in a human colon cancer xenograft expressing MDR1 complementary DNA by in vivo administration of MRK-16 monoclonal antibody. Pearson, J.W., Fogler, W.E., Volker, K., Usui, N., Goldenberg, S.K., Gruys, E., Riggs, C.W., Komschlies, K., Wiltrout, R.H., Tsuruo, T. J. Natl. Cancer Inst. (1991) [Pubmed]
  16. The effects of adrenomedullin overexpression in breast tumor cells. Martínez, A., Vos, M., Guédez, L., Kaur, G., Chen, Z., Garayoa, M., Pío, R., Moody, T., Stetler-Stevenson, W.G., Kleinman, H.K., Cuttitta, F. J. Natl. Cancer Inst. (2002) [Pubmed]
  17. Delayed xenograft rejection. Bach, F.H., Winkler, H., Ferran, C., Hancock, W.W., Robson, S.C. Immunol. Today (1996) [Pubmed]
  18. Doxorubicin disaccharide analogue: apoptosis-related improvement of efficacy in vivo. Arcamone, F., Animati, F., Berettoni, M., Bigioni, M., Capranico, G., Casazza, A.M., Caserini, C., Cipollone, A., De Cesare, M., Franciotti, M., Lombardi, P., Madami, A., Manzini, S., Monteagudo, E., Polizzi, D., Pratesi, G., Righetti, S.C., Salvatore, C., Supino, R., Zunino, F. J. Natl. Cancer Inst. (1997) [Pubmed]
  19. Recapitulation of normal and abnormal BB rat immune system development in scid mouse/rat lymphohemopoietic chimeras. Greiner, D.L., Shultz, L.D., Rossini, A.A., Mordes, J.P., Handler, E.S., Rajan, T.V. J. Clin. Invest. (1991) [Pubmed]
  20. Invasive and metastatic potential of a v-Ha-ras-transformed human bronchial epithelial cell line. Bonfil, R.D., Reddel, R.R., Ura, H., Reich, R., Fridman, R., Harris, C.C., Klein-Szanto, J.P. J. Natl. Cancer Inst. (1989) [Pubmed]
  21. Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. Bals, R., Weiner, D.J., Meegalla, R.L., Wilson, J.M. J. Clin. Invest. (1999) [Pubmed]
  22. Differential localization of human pancreas cancer-associated antigen and carcinoembryonic antigen in homologous pancreatic tumoral xenograft. Tan, M.H., Shimano, T., Chu, T.M. J. Natl. Cancer Inst. (1981) [Pubmed]
  23. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Heise, C., Sampson-Johannes, A., Williams, A., McCormick, F., Von Hoff, D.D., Kirn, D.H. Nat. Med. (1997) [Pubmed]
  24. Imaging 26S proteasome activity and inhibition in living mice. Luker, G.D., Pica, C.M., Song, J., Luker, K.E., Piwnica-Worms, D. Nat. Med. (2003) [Pubmed]
  25. Cytotoxicity of cisplatin and cisdiammine-1,1-cyclobutane dicarboxylate in MGH-U1 cells grown as monolayers, spheroids, and xenografts. Erlichman, C., Vidgen, D., Wu, A. J. Natl. Cancer Inst. (1985) [Pubmed]
  26. Enhanced success rate of transplantation with human tumors in cyclophosphamide-treated nude mice. Braakhuis, B.J., Nauta, M.M., Romijn, J.C., Rutgers, D.H., Smink, T. J. Natl. Cancer Inst. (1986) [Pubmed]
  27. Evaluation of cyclosporine-treated mice as hosts for growing and testing the chemosensitivity of first-transplant-generation human tumor xenografts implanted under the kidney capsule. Bennett, J.A., Pilon, V.A., Briggs, D.R., McKneally, M.F. J. Natl. Cancer Inst. (1985) [Pubmed]
  28. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Lyden, D., Young, A.Z., Zagzag, D., Yan, W., Gerald, W., O'Reilly, R., Bader, B.L., Hynes, R.O., Zhuang, Y., Manova, K., Benezra, R. Nature (1999) [Pubmed]
  29. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Ravi, R., Mookerjee, B., Bhujwalla, Z.M., Sutter, C.H., Artemov, D., Zeng, Q., Dillehay, L.E., Madan, A., Semenza, G.L., Bedi, A. Genes Dev. (2000) [Pubmed]
  30. CCR5 expression influences the progression of human breast cancer in a p53-dependent manner. Mañes, S., Mira, E., Colomer, R., Montero, S., Real, L.M., Gómez-Moutón, C., Jiménez-Baranda, S., Garzón, A., Lacalle, R.A., Harshman, K., Ruíz, A., Martínez-A, C. J. Exp. Med. (2003) [Pubmed]
  31. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. Warren, R.S., Yuan, H., Matli, M.R., Gillett, N.A., Ferrara, N. J. Clin. Invest. (1995) [Pubmed]
  32. Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. Kurihara, T., Brough, D.E., Kovesdi, I., Kufe, D.W. J. Clin. Invest. (2000) [Pubmed]
  33. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Ildstad, S.T., Sachs, D.H. Nature (1984) [Pubmed]
  34. Effects of modulation of basic fibroblast growth factor on tumor growth in vivo. Gross, J.L., Herblin, W.F., Dusak, B.A., Czerniak, P., Diamond, M.D., Sun, T., Eidsvoog, K., Dexter, D.L., Yayon, A. J. Natl. Cancer Inst. (1993) [Pubmed]
  35. Ablation of human colon carcinoma in nude mice by 131I-labeled monoclonal anti-carcinoembryonic antigen antibody F(ab')2 fragments. Buchegger, F., Pfister, C., Fournier, K., Prevel, F., Schreyer, M., Carrel, S., Mach, J.P. J. Clin. Invest. (1989) [Pubmed]
  36. Antitumor effects of interleukin-7 and adoptive immunotherapy on human colon carcinoma xenografts. Murphy, W.J., Back, T.C., Conlon, K.C., Komschlies, K.L., Ortaldo, J.R., Sayers, T.J., Wiltrout, R.H., Longo, D.L. J. Clin. Invest. (1993) [Pubmed]
  37. Transplantation of discordant xenografts: a review of progress. Platt, J.L., Vercellotti, G.M., Dalmasso, A.P., Matas, A.J., Bolman, R.M., Najarian, J.S., Bach, F.H. Immunol. Today (1990) [Pubmed]
 
WikiGenes - Universities