The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Effect of acidic pH on the structure and lipid binding properties of porcine surfactant protein A. Potential role of acidification along its exocytic pathway.

Pulmonary surfactant protein A (SP-A) is synthesized by type II cells and stored intracellularly in secretory granules (lamellar bodies) together with surfactant lipids and hydrophobic surfactant proteins B and C (SP-B and SP-C). We asked whether the progressive decrease in pH along the exocytic pathway could influence the secondary structure and lipid binding and aggregation properties of porcine SP-A. Conformational analysis from CD spectra of SP-A at various pH values indicated that the percentage of alpha-helix progressively decreased and that of beta-sheet increased as the pH was reduced. The protein underwent a marked self-aggregation at mildly acidic pH in the presence of Ca2+, conditions thought to resemble those existing in the trans-Golgi network. Protein aggregation was greater as the pH was reduced. We also found that both neutral and acidic vesicles either with or without SP-B or SP-C bound to SP-A at acidic pH as demonstrated by co-migration during centrifugation. However, the binding of acidic but not neutral vesicles to SP-A led to 1) a striking change in the CD spectra of the protein, which was interpreted as a decrease of the level of SP-A self-aggregation, and 2) a protection of the protein from endoproteinase Glu-C degradation at pH 4. 5. SP-A massively aggregated acidic vesicles but poorly aggregated neutral vesicles at acidic pH. Aggregation of dipalmitoylphosphatidylcholine (DPPC) vesicles either with or without SP-B and/or SP-C strongly depended on pH, being progressively decreased as the pH was reduced and markedly increased when pH was shifted back to 7. 0. At the pH of lamellar bodies, SP-A-induced aggregation of DPPC vesicles containing SP-B or a mixture of SP-B and SP-C was very low, although SP-A bound to these vesicles. These results indicate that 1) DPPC binding and DPPC aggregation are different phenomena that probably have different SP-A structural requirements and 2) aggregation of membranes induced by SP-A at acidic pH is critically dependent on the presence of acidic phospholipids, which affect protein structure, probably preventing the formation of large aggregates of protein.[1]


WikiGenes - Universities