The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Human endothelial cell storage granules: a novel intracellular site for isoforms of the endothelin-converting enzyme.

We have previously shown endothelin (ET)-like immunoreactive staining in Weibel-Palade bodies, storage granules that are an integral component of the regulated secretory pathway in endothelial cells. These structures degranulate after chemical or mechanical stimuli that result in cytosolic calcium influx. We therefore investigated whether the regulated pathway might be an intracellular site involved in the cleavage of big ET-1 to the biologically active peptide ET-1 by determining the ultrastructural localization of endothelin-converting enzyme (ECE)-1. A low level of ECE-like immunoreactivity was detected on the cell surface of human umbilical vein and coronary artery endothelial cells by scanning electron microscopy. Exogenous big ET-1 was added to permeabilized and nonpermeabilized cultured human umbilical vein endothelial cells, and ECE activity was measured by the detection of ET-like immunoreactivity in the culture supernatant. A marked increase in ECE activity was observed in permeabilized cells, indicating that ECE may also be expressed in intracellular compartments. Confocal microscopy revealed intense immunofluorescence staining for big ET-1 and the 2 isoforms of ECE-1 (ECE-1alpha and ECE-1beta) in the perinuclear region and in Weibel-Palade bodies of the human umbilical vein endothelial cells. Stimulated degranulation of storage granules by the calcium ionophore A23187 caused release of ET into the culture supernatants. The findings of this study indicate that big ET-1 is processed to the mature vasoactive peptide by ECEs located within endothelial storage granules. We hypothesize that this activity may be important in the regulated mobilization of ET in human endothelial cells.[1]

References

 
WikiGenes - Universities