The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A cellular repressor of E1A-stimulated genes that inhibits activation by E2F.

The adenovirus E1A protein both activates and represses gene expression to promote cellular proliferation and inhibit differentiation. Here we report the identification and characterization of a cellular protein that antagonizes transcriptional activation and cellular transformation by E1A. This protein, termed CREG for cellular repressor of E1A-stimulated genes, shares limited sequence similarity with E1A and binds both the general transcription factor TBP and the tumor suppressor pRb in vitro. In transfection assays, CREG represses transcription and antagonizes 12SE1A- mediated activation of both the adenovirus E2 and cellular hsp70 promoters. CREG also antagonizes E1A-mediated transformation, as expression of CREG reduces the efficiency with which E1A and the oncogene ras cooperate to transform primary cells. Binding sites for E2F, a key transcriptional regulator of cell cycle progression, were found to be required for repression of the adenovirus E2 promoter by CREG, and CREG was shown to inhibit activation by E2F. Since both the adenovirus E1A protein and transcriptional activation by E2F function to promote cellular proliferation, the results presented here suggest that CREG activity may contribute to the transcriptional control of cell growth and differentiation.[1]

References

  1. A cellular repressor of E1A-stimulated genes that inhibits activation by E2F. Veal, E., Eisenstein, M., Tseng, Z.H., Gill, G. Mol. Cell. Biol. (1998) [Pubmed]
 
WikiGenes - Universities