The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

5-hydroxytryptamine3 (5-HT3) receptor-mediated depolarisation of the rat isolated vagus nerve: modulation by trichloroethanol and related alcohols.

The ability of 2,2,2-trichloroethanol (TCE) and related alcohols to modify the 5-hydroxytryptamine3 (5-HT3) receptor-mediated depolarisation of the rat isolated cervical vagus nerve were investigated by extracellular electrophysiological recording using the 'grease gap' technique. TCE at millimolar concentrations increased the magnitude of the 5-HT3 receptor-mediated depolarisations of the rat vagus nerve by a number of agonists (5-HT, phenylbiguanide (PBG), quipazine). Concentration response curves generated for the 5-HT3 receptor agonists. 5-HT and PBG, in the absence and presence of TCE (5 mM) indicated that the potentiation in agonist-induced depolarisation was due to an increase in both agonist potency and apparent efficacy. Following apparent complete 5-HT3 receptor desensitisation (induced by either 5-HT or PBG; 100 microM for 90 min), application of TCE (5 mM) in the continued presence of either agonist induced a depolarisation of the vagus nerve. In addition to TCE, a number of related alcohols (tribromoethanol, isopentanol and 5-chloropentanol but not ethanol) at millimolar concentrations also potentiated depolarisation of the vagus nerve induced by 5-HT. Combined application of both TCE (0.1-20 mM) and isopentanol (20 mM) indicated that the potentiation of the 5-HT3 receptor-mediated depolarisation by these alcohols was not additive. The present studies indicate that the 5-HT3 receptor expressed on the cervical vagus nerve is susceptible to allosteric modulation by a number of alcohols including the anaesthetic agent TCE. Such an interaction may have relevance to the nausea and vomiting experienced by some patients following recovery from general anaesthesia.[1]

References

 
WikiGenes - Universities