c-Fos degradation by the proteasome. An early, Bcl-2-regulated step in apoptosis.
c-Fos is a transcription factor that promotes cell growth, differentiation, and transformation. We found that c-Fos was degraded when WEHI7.2 mouse lymphoma cells were induced to undergo apoptosis with the calcium ATPase inhibitor, thapsigargin, or the glucocorticoid hormone, dexamethasone. The degradation of c-Fos preceded caspase-3 activation and apoptotic nuclear chromatin condensation and was inhibited by the proteasome inhibitors MG132, N-acetyl-leucyl-leucyl-norleucinal, and lactacystin. Stable transfection of WEHI7.2 cells with a mutant form of c-Fos that was not degraded by the proteasome inhibited apoptosis. Also, overexpression of Bcl-2 in WEHI7.2 cells blocked c-Fos degradation and inhibited apoptosis. The results indicate that proteasome-mediated degradation of c-Fos is an early, Bcl-2-regulated step in apoptosis induction by thapsigargin and dexamethasone. These findings suggest that c-Fos may have a protective action that is eliminated by proteasome-mediated degradation and preserved by Bcl-2.[1]References
- c-Fos degradation by the proteasome. An early, Bcl-2-regulated step in apoptosis. He, H., Qi, X.M., Grossmann, J., Distelhorst, C.W. J. Biol. Chem. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg