Chemical cross-linking of ethidium to DNA by glyoxal.
Ethidium was found to be efficiently cross-linked to DNA by glyoxal. Kinetic studies showed that the rate of the cross-linking reaction is strongly dependent on the glyoxal concentration. Comparative studies using a series of phenanthridines and acridines showed that NH2 groups at both the 2 and 7 positions on the phenanthridine ring are necessary for efficient cross-linking. Studies using synthetic polydeoxynucleotides showed that the 2-amino group of guanine is absolutely required for cross-linking. Fluorescence contact energy transfer and relative viscosity experiments showed that the cross-linked drug remains intercalated into DNA. DNA gel electrophoresis and melting studies demonstrated that cross-linked ethidium does not dissociate the DNA double helix to single strands.[1]References
- Chemical cross-linking of ethidium to DNA by glyoxal. Leng, F., Graves, D., Chaires, J.B. Biochim. Biophys. Acta (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg