Bisphenols that stimulate cells to release alkali metal cations: a structure-activity study.
The laxative action of phenolphthalein (5) is believed to result from induction of potassium and water efflux from the colon epithelium. In cultured cells, K+ efflux is promoted by 5 and by a contaminant (1) present in commercial phenol red. Six compounds with chemical structures related to those of 5 and 1 were tested for ability to induce the release of 86Rb from COS-7 cells preloaded with this isotope: 4,4'-(9-fluorenylidene)diphenol (2), 4, 4'-(9-fluorenylidene)dianiline, 4, 4'-(9-fluorenylidene)bisphenoxyethanol, 1,1'-bi-2-naphthol, 4, 4'-biphenol, and bis(4-hydroxyphenyl)methane. With one exception these compounds were all inactive at a concentration of 10 microM. However, 2 caused profound 86Rb efflux at concentrations as low as 100 nM. Concentrations of 5 1-2 orders of magnitude higher were needed to achieve similar levels of activity. The three compounds known to be active in this experimental system share a common feature that is absent in all the inactive compounds: a five-membered ring structure, one of whose carbon atoms is disubstituted with p-hydroxyphenyl residues. Because 2 and 5 are readily available, comparative studies on the mechanism of action of these biphenols at the cellular level can now be undertaken.[1]References
- Bisphenols that stimulate cells to release alkali metal cations: a structure-activity study. Hopp, L., Megee, S.O., Lloyd, J.B. J. Med. Chem. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg