SRC-1 and GRIP1 coactivate transcription with hepatocyte nuclear factor 4.
Hepatocyte nuclear factor-4 (HNF4), a member of the nuclear receptor superfamily, plays an important role in tissue-specific gene expression, including genes involved in hepatic glucose metabolism. In this study, we show that SRC-1 and GRIP1, which act as coactivators for various nuclear receptors, associate with HNF4 in vivo and enhance its transactivation potential. The AF-2 domain of HNF4 is required for this interaction and for the potentiation of transcriptional activity by these coactivators. p300 can also serve as a coactivator with HNF4, and it synergizes with SRC-1 to further augment the activity of HNF4. HNF4 is also a key regulator of the expression of hepatocyte nuclear factor-1 (HNF1). The overexpression of SRC-1 or GRIP1 enhances expression from a HNF1 gene promoter-reporter in HepG2 hepatoma cells, and this requires an intact HNF4- binding site in the HNF1 gene promoter. Type 1 maturity onset diabetes of young (MODY), which is characterized by abnormal glucose-mediated insulin secretion, is caused by mutations of the HNF4 gene. A mutation of the HNF4- binding site in the HNF1 gene promoter has also been associated with MODY. Thus, HNF4 is involved in the regulation of glucose homeostasis at several levels and along with the SRC-1, GRIP1, and p300 may play an important role in the pathophysiology of non-insulin-dependent diabetes mellitus.[1]References
- SRC-1 and GRIP1 coactivate transcription with hepatocyte nuclear factor 4. Wang, J.C., Stafford, J.M., Granner, D.K. J. Biol. Chem. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg