The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

PGAM-M expression is regulated pretranslationally in hindlimb muscles and under altered loading conditions.

Enzymatic activity from the muscle-specific isoform of phosphoglycerate mutase ( PGAM-M) is higher within glycolytic skeletal muscles than in oxidative muscles. The hypothesis that PGAM-M is regulated pretranslationally among muscles of the hindlimb was tested using enzymatic assays, Western blots, and Northern blots. We further investigated the regulatory level(s) at which PGAM-M gene expression is controlled during hindlimb unweighting. PGAM-M mRNA and immunoreactive protein levels were fourfold lower in the rat soleus muscle than in the tibialis anterior (TA), plantaris, and extensor digitorum longus muscles. Four weeks of unweighting induced a 2.5-fold increase in PGAM enzymatic activity within the soleus muscle, a 1.8-fold increase in PGAM-M immunoreactivity, and a 3. 5-fold increase in PGAM-M mRNA. To examine potential transcriptional regulatory mechanisms, the proximal 400 bp of the rat PGAM-M promoter were linked to a firefly luciferase and injected into normal and unweighted TA and soleus muscles. Firefly luciferase activity was elevated two- to threefold in the TA and the unweighted soleus over the normal soleus muscle. These data suggest that PGAM-M expression is pretranslationally regulated among muscle types and within unweighted slow-twitch muscle. Furthermore, the proximal 400 bp of the PGAM-M promoter contains cis-acting sequences to allow muscle-type-specific expression of a reporter gene and responsiveness to soleus muscle unweighting.[1]

References

 
WikiGenes - Universities