The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Contributions of aspartate 49 and phenylalanine 142 residues of a tight binding inhibitory protein of beta-lactamases.

beta-Lactamases are bacterial enzymes that hydrolyze beta-lactam antibiotics to render them inactive. The beta-lactamase inhibitor protein (BLIP) of Streptomyces clavuligerus, is a potent inhibitor of several beta-lactamases, including the TEM-1 enzyme (Ki = 0.6 nM). Evidence from the TEM-1/BLIP co-crystal suggests that two BLIP residues, Asp-49 and Phe-142, mimic interactions made by penicillin G when bound in the active site of TEM-1. To determine the importance of these two residues, a heterologous expression system for BLIP was established in Escherichia coli. Site-directed mutagenesis was used to change Asp-49 and Phe-142 to alanine, and inhibition constants (Ki) for both mutants were determined. Each mutation increases the Ki for BLIP inhibition of TEM-1 beta-lactamase approximately 100-fold. To address how these two positions effect the specificity of beta-lactamase binding, Ki values were determined for the interaction of wild-type BLIP, as well as the D49A and F142A mutants, with two extended spectrum beta-lactamases (the G238S and the E104K TEM variants). Positions 104 and 238 are located in the BLIP/ beta-lactamase interface. Interestingly, the three BLIP proteins inhibited the G238S beta-lactamase mutant to the same degree that they inhibited TEM-1. However, wild-type BLIP has a higher Ki for the E104K beta-lactamase mutant, suggesting that interactions between BLIP and beta-lactamase residue Glu-104 are important for wild-type levels of BLIP inhibition.[1]

References

 
WikiGenes - Universities