The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Hypoxia post-translationally activates iron-regulatory protein 2.

Iron-regulatory proteins 1 and 2 (IRP1 and IRP2) are RNA-binding proteins that post-transcriptionally regulate the expression of mRNAs that code for proteins involved in the maintenance of iron and energy homeostasis. Here we show that hypoxia differentially regulates the RNA binding activities of IRP1 and IRP2 in human 293 and in mouse Hepa-1 cells. In contrast to IRP1, where hypoxic exposure decreases IRP1 RNA binding activity, hypoxia increases IRP2 RNA binding activity. The hypoxic increase in IRP2 RNA binding activity results from increased IRP2 protein levels. Cobalt, which mimics hypoxia by activation of hypoxia-inducible factor 1 (HIF-1), also increases IRP2 protein levels; however, cobalt-induced IRP2 lacks RNA binding activity. Addition of a reductant to cobalt-treated extracts restored IRP2 RNA binding activity. Hypoxic activation of IRP2 is not because of an increase in transcriptional activation by HIF-1, because IRP2 accumulates in Hepa-1 cells lacking a functional HIF-1beta subunit, nor is it because of an increase in IRP2 mRNA stability. Rather, our data indicate that hypoxia increases IRP2 levels by a post-translational mechanism involving protein stability. Differential regulation of IRP1 and IRP2 during hypoxia may regulate specific IRP target mRNAs whose expression is required for hypoxic adaptation. Furthermore, these data imply mechanistic parallels between the hypoxia-induced post-transcriptional regulation of IRP2 and HIF-1alpha.[1]

References

  1. Hypoxia post-translationally activates iron-regulatory protein 2. Hanson, E.S., Foot, L.M., Leibold, E.A. J. Biol. Chem. (1999) [Pubmed]
 
WikiGenes - Universities