The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Higd1a  -  HIG1 hypoxia inducible domain family,...

Rattus norvegicus

Synonyms: HIG1 domain family member 1A, mitochondrial, Hig1, Hypoxia-inducible gene 1 protein
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Hig1


Psychiatry related information on Hig1


High impact information on Hig1


Chemical compound and disease context of Hig1


Biological context of Hig1


Anatomical context of Hig1


Associations of Hig1 with chemical compounds


Physical interactions of Hig1


Enzymatic interactions of Hig1

  • In addition, studies with rat primary-cultured cardiomyocytes demonstrated that acetylcholine effectively prevented the hypoxia-induced loss of phosphorylated Cx43 and ameliorated the loss of cell-to-cell communication as determined by Lucifer Yellow dye transfer assay, which supports the in vivo results [35].

Regulatory relationships of Hig1


Other interactions of Hig1


Analytical, diagnostic and therapeutic context of Hig1


  1. VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization. Ishida, S., Usui, T., Yamashiro, K., Kaji, Y., Amano, S., Ogura, Y., Hida, T., Oguchi, Y., Ambati, J., Miller, J.W., Gragoudas, E.S., Ng, Y.S., D'Amore, P.A., Shima, D.T., Adamis, A.P. J. Exp. Med. (2003) [Pubmed]
  2. Loss of endothelium-dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia. Adnot, S., Raffestin, B., Eddahibi, S., Braquet, P., Chabrier, P.E. J. Clin. Invest. (1991) [Pubmed]
  3. Cell surface changes and enzyme release during hypoxia and reoxygenation in the isolated, perfused rat liver. Lemasters, J.J., Stemkowski, C.J., Ji, S., Thurman, R.G. J. Cell Biol. (1983) [Pubmed]
  4. Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Kubasiak, L.A., Hernandez, O.M., Bishopric, N.H., Webster, K.A. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  5. Enhanced sensitivity to hypoxia-induced diastolic dysfunction in pressure-overload left ventricular hypertrophy in the rat: role of high-energy phosphate depletion. Wexler, L.F., Lorell, B.H., Momomura, S., Weinberg, E.O., Ingwall, J.S., Apstein, C.S. Circ. Res. (1988) [Pubmed]
  6. Behavioral changes induced by the thyrotropin-releasing hormone analogue, RGH 2202. Drago, F., Grassi, M., Valerio, C., Coppi, G., Lauria, N., Nicotra, G.C., Raffaele, R. Peptides (1991) [Pubmed]
  7. Effect of nitric oxide synthase inhibition on cardiorespiratory responses in the conscious rat. Gozal, D., Torres, J.E., Gozal, Y.M., Littwin, S.M. J. Appl. Physiol. (1996) [Pubmed]
  8. Effects of postnatal ganglioside administration and hypoxia-exposure on the dopamine release from striatal slices, the behaviour and the ganglioside pattern of 2-3 months old rats. Brux, B., Ogawa, K., Berndt, C., Wustmann, C., Fishcer, H.D., Lun, A., Abe, T., Gross, J. J. Neural Transm. Gen. Sect. (1992) [Pubmed]
  9. Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Shimizu, S., Eguchi, Y., Kosaka, H., Kamiike, W., Matsuda, H., Tsujimoto, Y. Nature (1995) [Pubmed]
  10. Hypoxia alters the subcellular distribution of protein kinase C isoforms in neonatal rat ventricular myocytes. Goldberg, M., Zhang, H.L., Steinberg, S.F. J. Clin. Invest. (1997) [Pubmed]
  11. p53 and the hypoxia-induced apoptosis of cultured neonatal rat cardiac myocytes. Long, X., Boluyt, M.O., Hipolito, M.L., Lundberg, M.S., Zheng, J.S., O'Neill, L., Cirielli, C., Lakatta, E.G., Crow, M.T. J. Clin. Invest. (1997) [Pubmed]
  12. Hypoxia-induced exocytosis of endothelial cell Weibel-Palade bodies. A mechanism for rapid neutrophil recruitment after cardiac preservation. Pinsky, D.J., Naka, Y., Liao, H., Oz, M.C., Wagner, D.D., Mayadas, T.N., Johnson, R.C., Hynes, R.O., Heath, M., Lawson, C.A., Stern, D.M. J. Clin. Invest. (1996) [Pubmed]
  13. Angiotensin converting enzyme expression is increased in small pulmonary arteries of rats with hypoxia-induced pulmonary hypertension. Morrell, N.W., Atochina, E.N., Morris, K.G., Danilov, S.M., Stenmark, K.R. J. Clin. Invest. (1995) [Pubmed]
  14. Induction of serotonin transporter by hypoxia in pulmonary vascular smooth muscle cells. Relationship with the mitogenic action of serotonin. Eddahibi, S., Fabre, V., Boni, C., Martres, M.P., Raffestin, B., Hamon, M., Adnot, S. Circ. Res. (1999) [Pubmed]
  15. Early midzonal cell death during low-flow hypoxia in the isolated, perfused rat liver: protection by allopurinol. Marotto, M.E., Thurman, R.G., Lemasters, J.J. Hepatology (1988) [Pubmed]
  16. The paradox between resistance to hypoxia and liability to hypoxic damage in hyperglycemic peripheral nerves. Evidence for glycolysis involvement. Schneider, U., Niedermeier, W., Grafe, P. Diabetes (1993) [Pubmed]
  17. Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells. Ikeda, E., Achen, M.G., Breier, G., Risau, W. J. Biol. Chem. (1995) [Pubmed]
  18. Hypoxic preconditioning induces changes in HIF-1 target genes in neonatal rat brain. Jones, N.M., Bergeron, M. J. Cereb. Blood Flow Metab. (2001) [Pubmed]
  19. Methionine sulfoxide reductase A protects neuronal cells against brief hypoxia/reoxygenation. Yermolaieva, O., Xu, R., Schinstock, C., Brot, N., Weissbach, H., Heinemann, S.H., Hoshi, T. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  20. The influence of pressure overload left ventricular hypertrophy on diastolic properties during hypoxia in isovolumically contracting rat hearts. Lorell, B.H., Wexler, L.F., Momomura, S., Weinberg, E., Apstein, C.S. Circ. Res. (1986) [Pubmed]
  21. Hypoxia inhibits myogenic reactivity of renal afferent arterioles by activating ATP-sensitive K+ channels. Loutzenhiser, R.D., Parker, M.J. Circ. Res. (1994) [Pubmed]
  22. Gene 33/RALT is induced by hypoxia in cardiomyocytes, where it promotes cell death by suppressing phosphatidylinositol 3-kinase and extracellular signal-regulated kinase survival signaling. Xu, D., Patten, R.D., Force, T., Kyriakis, J.M. Mol. Cell. Biol. (2006) [Pubmed]
  23. Characterization of hypoxia induced gene 1: expression during rat central nervous system maturation and evidence of antisense RNA expression. Bedo, G., Vargas, M., Ferreiro, M.J., Chalar, C., Agrati, D. Int. J. Dev. Biol. (2005) [Pubmed]
  24. Cytochrome a,a3 reoxidation. Early indicator of metabolic recovery from hemorrhagic shock in rats. Kariman, K., Jöbsis, F.F., Saltzman, H.A. J. Clin. Invest. (1983) [Pubmed]
  25. Hydrogen peroxide derived from hepatocytes induces sinusoidal endothelial cell apoptosis in perfused hypoxic rat liver. Motoyama, S., Minamiya, Y., Saito, S., Saito, R., Matsuzaki, I., Abo, S., Inaba, H., Enomoto, K., Kitamura, M. Gastroenterology (1998) [Pubmed]
  26. Hypoxia-induced increases in pulmonary transvascular protein escape in rats. Modulation by glucocorticoids. Stelzner, T.J., O'Brien, R.F., Sato, K., Weil, J.V. J. Clin. Invest. (1988) [Pubmed]
  27. Prostaglandin E1 abrogates early reductive stress and zone-specific paradoxical oxidative injury in hypoperfused rat liver. Suzuki, H., Suematsu, M., Ishii, H., Kato, S., Miki, H., Mori, M., Ishimura, Y., Nishino, T., Tsuchiya, M. J. Clin. Invest. (1994) [Pubmed]
  28. Regulation by hypoxia of methionine adenosyltransferase activity and gene expression in rat hepatocytes. Avila, M.A., Carretero, M.V., Rodriguez, E.N., Mato, J.M. Gastroenterology (1998) [Pubmed]
  29. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Wang, X., Pang, Y., Ku, G., Xie, X., Stoica, G., Wang, L.V. Nat. Biotechnol. (2003) [Pubmed]
  30. The role of cysteine proteases in hypoxia-induced rat renal proximal tubular injury. Edelstein, C.L., Wieder, E.D., Yaqoob, M.M., Gengaro, P.E., Burke, T.J., Nemenoff, R.A., Schrier, R.W. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  31. Expression and regulation of adhesion molecules in cardiac cells by cytokines: response to acute hypoxia. Kacimi, R., Karliner, J.S., Koudssi, F., Long, C.S. Circ. Res. (1998) [Pubmed]
  32. Dexamethasone downregulates chemokine receptor CXCR4 and exerts neuroprotection against hypoxia/ischemia-induced brain injury in neonatal rats. Felszeghy, K., Banisadr, G., Rostène, W., Nyakas, C., Haour, F. Neuroimmunomodulation (2004) [Pubmed]
  33. Hypoxia-induced protein binding to O2-responsive sequences on the tyrosine hydroxylase gene. Norris, M.L., Millhorn, D.E. J. Biol. Chem. (1995) [Pubmed]
  34. The influence of nimodipine and MK-801 on the brain free arachidonic acid level and the learning ability in hypoxia-exposed rats. Mrsić, J., Zupan, G., Eraković, V., Simonić, A., Varljen, J. Prog. Neuropsychopharmacol. Biol. Psychiatry (1997) [Pubmed]
  35. Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein. Ando, M., Katare, R.G., Kakinuma, Y., Zhang, D., Yamasaki, F., Muramoto, K., Sato, T. Circulation (2005) [Pubmed]
  36. Hypoxia-induced ischemic tolerance in neonatal rat brain involves enhanced ERK1/2 signaling. Jones, N.M., Bergeron, M. J. Neurochem. (2004) [Pubmed]
  37. Cardiac expressions of HIF-1 alpha and HLF/EPAS, two basic loop helix/PAS domain transcription factors involved in adaptative responses to hypoxic stresses. Ladoux, A., Frelin, C. Biochem. Biophys. Res. Commun. (1997) [Pubmed]
  38. Hypoxia differentially regulates stress proteins in cultured cardiomyocytes: role of the p38 stress-activated kinase signaling cascade, and relation to cytoprotection. Kacimi, R., Chentoufi, J., Honbo, N., Long, C.S., Karliner, J.S. Cardiovasc. Res. (2000) [Pubmed]
  39. Increased vascular endothelial growth factor production in the lungs of rats with hypoxia-induced pulmonary hypertension. Christou, H., Yoshida, A., Arthur, V., Morita, T., Kourembanas, S. Am. J. Respir. Cell Mol. Biol. (1998) [Pubmed]
  40. Mild hypoxia induces hypertrophy of cultured neonatal rat cardiomyocytes: a possible endogenous endothelin-1-mediated mechanism. Ito, H., Adachi, S., Tamamori, M., Fujisaki, H., Tanaka, M., Lin, M., Akimoto, H., Marumo, F., Hiroe, M. J. Mol. Cell. Cardiol. (1996) [Pubmed]
  41. EPAS1 trans-activation during hypoxia requires p42/p44 MAPK. Conrad, P.W., Freeman, T.L., Beitner-Johnson, D., Millhorn, D.E. J. Biol. Chem. (1999) [Pubmed]
  42. Hypoxia induces selective SAPK/JNK-2-AP-1 pathway activation in the nucleus tractus solitarii of the conscious rat. Gozal, E., Simakajornboon, N., Dausman, J.D., Xue, Y.D., Corti, M., El-Dahr, S.S., Gozal, D. J. Neurochem. (1999) [Pubmed]
  43. CO modulates pulmonary vascular response to acute hypoxia: relation to endothelin. Zhang, F., Kaide, J.I., Yang, L., Jiang, H., Quan, S., Kemp, R., Gong, W., Balazy, M., Abraham, N.G., Nasjletti, A. Am. J. Physiol. Heart Circ. Physiol. (2004) [Pubmed]
  44. A comparative study of ethanol, hypoglycemia, hypoxia and neurotrophic factor interactions with fetal rat hippocampal neurons: a multi-factor in vitro model developmental ethanol effects. Mitchell, J.J., Paiva, M., Moore, D.B., Walker, D.W., Heaton, M.B. Brain Res. Dev. Brain Res. (1998) [Pubmed]
  45. Molecular imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice. Serganova, I., Doubrovin, M., Vider, J., Ponomarev, V., Soghomonyan, S., Beresten, T., Ageyeva, L., Serganov, A., Cai, S., Balatoni, J., Blasberg, R., Gelovani, J. Cancer Res. (2004) [Pubmed]
  46. Epileptogenic effect of hypoxia in the immature rodent brain. Jensen, F.E., Applegate, C.D., Holtzman, D., Belin, T.R., Burchfiel, J.L. Ann. Neurol. (1991) [Pubmed]
  47. Cloning and characterization of the rat alpha 1a-adrenergic receptor gene promoter. Demonstration of cell specificity and regulation by hypoxia. Michelotti, G.A., Bauman, M.J., Smith, M.P., Schwinn, D.A. J. Biol. Chem. (2003) [Pubmed]
  48. Hypoxia-induced gene expression in human macrophages: implications for ischemic tissues and hypoxia-regulated gene therapy. Burke, B., Giannoudis, A., Corke, K.P., Gill, D., Wells, M., Ziegler-Heitbrock, L., Lewis, C.E. Am. J. Pathol. (2003) [Pubmed]
  49. Hypoxia-induced regulation of MAPK phosphatase-1 as identified by subtractive suppression hybridization and cDNA microarray analysis. Seta, K.A., Kim, R., Kim, H.W., Millhorn, D.E., Beitner-Johnson, D. J. Biol. Chem. (2001) [Pubmed]
WikiGenes - Universities