The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Serpina3m  -  serine (or cysteine) peptidase inhibitor,...

Mus musculus

Synonyms: 3e46, AI195004, MMCM7, MMSPi2.4, Serine protease inhibitor A3M, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Serpina3m

 

Psychiatry related information on Serpina3m

 

High impact information on Serpina3m

  • For newly synthesized alpha1-antitrypsin (AAT), the modification of its asparagine-linked oligosaccharides by a slow-acting mannosidase partitions the misfolded monomer into the proteasomal degradation pathway [3].
  • Herein, we asked whether, and how, modification by endoplasmic reticulum mannosidase I (ERManI) contributes to the preferential selection of the misfolded AAT monomer for proteasomal degradation [3].
  • The human alpha1-antitrypsin promoter was chosen to direct expression because it was the most efficient of several tested in yielding expression of alpha1-antitrypsin protein from a retroviral vector in hepatocytes in vivo [6].
  • FTF binding sites are found in the promoters of other liver-expressed genes, some encoding liver transcription factors; FTF, liver alpha1-antitrypsin promoter factor LFB2, and HNF-3beta promoter factor UF2-H3beta are probably the same factor [7].
  • In conclusion, this study demonstrated the feasibility of long-term engraftment and stability of transgene expression from genetically modified liver progenitor cells with a recombinant adenoassociated virus vector and implies a novel approach to gene therapy for treatment of liver diseases, such as alpha1-antitrypsin deficiency [8].
 

Biological context of Serpina3m

 

Anatomical context of Serpina3m

 

Associations of Serpina3m with chemical compounds

  • Suppression of cholesterol 7alpha-hydroxylase transcription and bile acid synthesis by an alpha1-antitrypsin peptide via interaction with alpha1-fetoprotein transcription factor [16].
  • Long-term expression of the human alpha1-antitrypsin gene in mice employing anionic and cationic liposome vectors [10].
  • A model is proposed in which the removal of mannose from multiple attached oligosaccharides directs calnexin in the selection of misfolded alpha1-antitrypsin for degradation by the proteasome [17].
  • EDEM3 accelerates glycoprotein ERAD in transfected HEK293 cells, as shown by increased degradation of misfolded alpha1-antitrypsin variant (null (Hong Kong)) and of TCRalpha [18].
  • Altered sedimentation of intracellular complexes following treatment with the specific proteasome inhibitor lactacystin, and in combination with mannosidase inhibition, revealed that the removal of mannose from attached oligosaccharides abrogates the release of misfolded alpha1-antitrypsin from calnexin prior to proteasomal degradation [17].
 

Other interactions of Serpina3m

 

Analytical, diagnostic and therapeutic context of Serpina3m

  • Using electrophoresis, Western blotting, and ELISA procedures, we have shown in the present study that this monoclonal antibody specifically detects a conformation-dependent neoepitope on both polymerized and elastase-complexed molecular forms of AAT [13].
  • These results strongly suggest that rAAV1-mediated AAT gene therapy may be useful as a novel approach to prevent type 1 diabetes [9].
  • The efficiency of both anionic and cationic liposomes as vectors for in vivo human alpha1-antitrypsin (AAT) gene transfer was studied in mice with and without an associated partial hepatectomy [10].
  • Molecular cloning and characterization of rat contrapsin-like protease inhibitor and related proteins [20].
  • Western blot analysis with antitrypsin antibody showed that 26 and 24 kDa proteins were highly detected in S4 conditioned medium (CM) in comparison to R3 CM [21].

References

  1. Efficient hepatic delivery and expression from a recombinant adeno-associated virus 8 pseudotyped alpha1-antitrypsin vector. Conlon, T.J., Cossette, T., Erger, K., Choi, Y.K., Clarke, T., Scott-Jorgensen, M., Song, S., Campbell-Thompson, M., Crawford, J., Flotte, T.R. Mol. Ther. (2005) [Pubmed]
  2. Epstein-Barr virus/human vector provides high-level, long-term expression of alpha1-antitrypsin in mice. Stoll, S.M., Sclimenti, C.R., Baba, E.J., Meuse, L., Kay, M.A., Calos, M.P. Mol. Ther. (2001) [Pubmed]
  3. Elucidation of the molecular logic by which misfolded alpha 1-antitrypsin is preferentially selected for degradation. Wu, Y., Swulius, M.T., Moremen, K.W., Sifers, R.N. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  4. Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Pontoglio, M., Barra, J., Hadchouel, M., Doyen, A., Kress, C., Bach, J.P., Babinet, C., Yaniv, M. Cell (1996) [Pubmed]
  5. Alterations in the mouse and human proteome caused by Huntington's disease. Zabel, C., Chamrad, D.C., Priller, J., Woodman, B., Meyer, H.E., Bates, G.P., Klose, J. Mol. Cell Proteomics (2002) [Pubmed]
  6. Therapeutic levels of functional human factor X in rats after retroviral-mediated hepatic gene therapy. Le, M., Okuyama, T., Cai, S.R., Kennedy, S.C., Bowling, W.M., Flye, M.W., Ponder, K.P. Blood (1997) [Pubmed]
  7. The alpha1-fetoprotein locus is activated by a nuclear receptor of the Drosophila FTZ-F1 family. Galarneau, L., Paré, J.F., Allard, D., Hamel, D., Levesque, L., Tugwood, J.D., Green, S., Bélanger, L. Mol. Cell. Biol. (1996) [Pubmed]
  8. Ex vivo transduced liver progenitor cells as a platform for gene therapy in mice. Song, S., Witek, R.P., Lu, Y., Choi, Y.K., Zheng, D., Jorgensen, M., Li, C., Flotte, T.R., Petersen, B.E. Hepatology (2004) [Pubmed]
  9. Alpha1-antitrypsin gene therapy modulates cellular immunity and efficiently prevents type 1 diabetes in nonobese diabetic mice. Lu, Y., Tang, M., Wasserfall, C., Kou, Z., Campbell-Thompson, M., Gardemann, T., Crawford, J., Atkinson, M., Song, S. Hum. Gene Ther. (2006) [Pubmed]
  10. Long-term expression of the human alpha1-antitrypsin gene in mice employing anionic and cationic liposome vectors. Crepso, J., Blaya, C., Crespo, A., Aliño, S.F. Biochem. Pharmacol. (1996) [Pubmed]
  11. Mechanism of uptake of C105Y, a novel cell-penetrating peptide. Rhee, M., Davis, P. J. Biol. Chem. (2006) [Pubmed]
  12. Changes of endoplasmic reticulum chaperone complexes, redox state, and impaired protein disulfide reductase activity in misfolding alpha1-antitrypsin transgenic mice. Papp, E., Száraz, P., Korcsmáros, T., Csermely, P. FASEB J. (2006) [Pubmed]
  13. Detection of circulating and endothelial cell polymers of Z and wild type alpha 1-antitrypsin by a monoclonal antibody. Janciauskiene, S., Dominaitiene, R., Sternby, N.H., Piitulainen, E., Eriksson, S. J. Biol. Chem. (2002) [Pubmed]
  14. Intrapleural administration of a serotype 5 adeno-associated virus coding for alpha1-antitrypsin mediates persistent, high lung and serum levels of alpha1-antitrypsin. De, B., Heguy, A., Leopold, P.L., Wasif, N., Korst, R.J., Hackett, N.R., Crystal, R.G. Mol. Ther. (2004) [Pubmed]
  15. Induction of avascular yolk sac due to reduction of basic fibroblast growth factor by retinoic acid in mice. Yasuda, Y., Nishi, N., Takahashi, J.A., Konishi, H., Ohara, I., Fujita, H., Ohta, M., Itoh, N., Hatanaka, M., Tanimura, T. Dev. Biol. (1992) [Pubmed]
  16. Suppression of cholesterol 7alpha-hydroxylase transcription and bile acid synthesis by an alpha1-antitrypsin peptide via interaction with alpha1-fetoprotein transcription factor. Gerbod-Giannone, M.C., Del Castillo-Olivares, A., Janciauskiene, S., Gil, G., Hylemon, P.B. J. Biol. Chem. (2002) [Pubmed]
  17. Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome. Liu, Y., Choudhury, P., Cabral, C.M., Sifers, R.N. J. Biol. Chem. (1999) [Pubmed]
  18. EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and mannose trimming. Hirao, K., Natsuka, Y., Tamura, T., Wada, I., Morito, D., Natsuka, S., Romero, P., Sleno, B., Tremblay, L.O., Herscovics, A., Nagata, K., Hosokawa, N. J. Biol. Chem. (2006) [Pubmed]
  19. Identification of genes specifically expressed in the accumulated visceral adipose tissue of OLETF rats. Hida, K., Wada, J., Zhang, H., Hiragushi, K., Tsuchiyama, Y., Shikata, K., Makino, H. J. Lipid Res. (2000) [Pubmed]
  20. Molecular cloning and characterization of rat contrapsin-like protease inhibitor and related proteins. Ohkubo, K., Ogata, S., Misumi, Y., Takami, N., Ikehara, Y. J. Biochem. (1991) [Pubmed]
  21. Production of trypsins by human gastric cancer cells correlates with their malignant phenotype. Kato, Y., Nagashima, Y., Koshikawa, N., Miyagi, Y., Yasumitsu, H., Miyazaki, K. Eur. J. Cancer (1998) [Pubmed]
 
WikiGenes - Universities