The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Intermediates of myocardial mitochondrial beta-oxidation: possible channelling of NADH and of CoA esters.

Adult rat heart mitochondria were isolated and incubated with [U-14C]hexadecanoyl-CoA or unlabelled hexadecanoyl-CoA. The accumulating CoA and carnitine esters and [NAD+]/[NADH] ratio were measured by HPLC or tandem mass spectrometry. Despite minimal changes in the intramitochondrial [NAD+]/[NADH] ratio, 2, 3-unsaturated and 3-hydroxyacyl esters were observed as well as saturated acyl-CoA and acylcarnitine esters. In addition to acetylcarnitine, significant amounts of butyryl-, hexanoyl-, octanoyl- and decanoylcarnitines were detected and measured. Rat myocardial beta-oxidation is subject to control at the level of 3-hydroxyacyl-CoA dehydrogenase but this control is not due to a simple lack of oxidised NAD. We hypothesise a pool of NAD in contact between the trifunctional protein of beta-oxidation and complex I of the respiratory chain, the turnover of which is responsible for some of the control of beta-oxidation flux. In addition, short- and medium-chain acylcarnitine esters were detected whereas only small amounts of long-chain acylcarnitines were present. This may imply the presence of a mitochondrial carnitine octanoyl transferase or may reflect channelling of long-chain CoA esters so that they are not available for carnitine palmitoyl transferase II activity.[1]

References

  1. Intermediates of myocardial mitochondrial beta-oxidation: possible channelling of NADH and of CoA esters. Eaton, S., Bartlett, K., Pourfarzam, M. Biochim. Biophys. Acta (1999) [Pubmed]
 
WikiGenes - Universities