The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Pathologic changes induced in respiratory tract mucosa by polycyclic hydrocarbons of differing carcinogenic activity.

Seven aromatic polycyclic hydrocarbons (PCHs) were investigated for their toxic effects on respiratory mucosa: benzo(e)pyrene (BeP), pyrene, anthracene, benz(a)anthracene(BaA), dibenz(a,c)anthracene(DBacA), benzo (a)pyrene (BaP), and dimethylbenz(a)anthracene (DMBA). The compounds were chosen because they comprise a spectrum of PCHs ranging from noncarcinogens, to initiators, to weak and strong carcinogens. All of them except DMBA are environmentally relevant chemicals. The chemicals were tested over an 8-week period. Heterotopic tracheal transplants were continously exposed and the histopathologic effects induced by the various PCHs were periodically assessed semiquantitatively. All PCHs exhibited varying degrees of toxicity for respiratory epithelium and submucosa. BeP clearly showed the least toxicity followed by pyrene and anthracene. BaA and DBacA caused marked epithelial and submucosal changes. In addition to epithelial hyperplasia, undifferentiated epithelium and squamous metaplasia developed. Marked mononuclear infiltration occurred in the subepithelial connective tissue. With BaP the epithelial and submucosal changes were similar but were much stronger. DMBA was the most toxic substance, causing epithelial necrosis followed by generalized keratinizing squamous metaplasia; the subepithelial changes consisted of an early acellular exudate and, later (at 8 weeks), marked condensation and hyalinization of the lamina propria. The toxic response pattern of the tracheal mucosa to carcinogenic agents was characterized by the chronicity of epithelial and connective tissue damage, as opposed to the short-lived hyperplastic and inflammatory response elicited by the noncarcinogens and weak initiators.[1]

References

  1. Pathologic changes induced in respiratory tract mucosa by polycyclic hydrocarbons of differing carcinogenic activity. Topping, D.C., Pal, B.C., Martin, D.H., Nelson, F.R., Nettesheim, P. Am. J. Pathol. (1978) [Pubmed]
 
WikiGenes - Universities