The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Respiratory Mucosa

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Respiratory Mucosa

 

High impact information on Respiratory Mucosa

 

Chemical compound and disease context of Respiratory Mucosa

 

Biological context of Respiratory Mucosa

 

Anatomical context of Respiratory Mucosa

 

Associations of Respiratory Mucosa with chemical compounds

 

Gene context of Respiratory Mucosa

  • Together, these observations demonstrate that SLPI is present in large amounts in respiratory ELF, but since the majority of the SLPI is inactive, it likely does not play a significant role in protecting the normal respiratory epithelium, except perhaps in the upper airways where the levels of SLPI are the highest [31].
  • These data suggest that expression of alternatively spliced CD44 molecules in the bronchial tract is related to the distinct differentiation of the respiratory epithelium [32].
  • The aim of this study was to determine the chemokine response pattern of respiratory epithelium when infected with respiratory syncytial virus (RSV) [33].
  • These results suggest there is an increased likelihood of expression of the GRP receptor mRNA in the respiratory epithelium of some individuals with a history of prolonged tobacco exposure, and that expression of the GRP receptor mRNA is accompanied by responsiveness to the mitogenic effects of BLPs [34].
  • To test this hypothesis, we developed an in vivo model of VEGF overexpression in the lung on the basis of delivery to the respiratory epithelium of the VEGF165 complementary DNA by an E1(-) adenovirus vector (AdVEGF165) [35].
 

Analytical, diagnostic and therapeutic context of Respiratory Mucosa

References

  1. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Crystal, R.G., McElvaney, N.G., Rosenfeld, M.A., Chu, C.S., Mastrangeli, A., Hay, J.G., Brody, S.L., Jaffe, H.A., Eissa, N.T., Danel, C. Nat. Genet. (1994) [Pubmed]
  2. Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo. Rosenfeld, M.A., Siegfried, W., Yoshimura, K., Yoneyama, K., Fukayama, M., Stier, L.E., Pääkkö, P.K., Gilardi, P., Stratford-Perricaudet, L.D., Perricaudet, M. Science (1991) [Pubmed]
  3. Stimulatory effect of Pseudomonas aeruginosa on mucin secretion by the respiratory epithelium. Adler, K.B., Winn, W.C., Alberghini, T.V., Craighead, J.E. JAMA (1983) [Pubmed]
  4. Nasal cavity neoplasia in F344/N rats and (C57BL/6 x C3H)F1 mice inhaling propylene oxide for up to two years. Renne, R.A., Giddens, W.E., Boorman, G.A., Kovatch, R., Haseman, J.E., Clarke, W.J. J. Natl. Cancer Inst. (1986) [Pubmed]
  5. Hydrocephalus, situs inversus, chronic sinusitis, and male infertility in DNA polymerase lambda-deficient mice: possible implication for the pathogenesis of immotile cilia syndrome. Kobayashi, Y., Watanabe, M., Okada, Y., Sawa, H., Takai, H., Nakanishi, M., Kawase, Y., Suzuki, H., Nagashima, K., Ikeda, K., Motoyama, N. Mol. Cell. Biol. (2002) [Pubmed]
  6. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Pomeranz, L.E., Reynolds, A.E., Hengartner, C.J. Microbiol. Mol. Biol. Rev. (2005) [Pubmed]
  7. Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. Spiekermann, G.M., Finn, P.W., Ward, E.S., Dumont, J., Dickinson, B.L., Blumberg, R.S., Lencer, W.I. J. Exp. Med. (2002) [Pubmed]
  8. GM-CSF-deficient mice are susceptible to pulmonary group B streptococcal infection. LeVine, A.M., Reed, J.A., Kurak, K.E., Cianciolo, E., Whitsett, J.A. J. Clin. Invest. (1999) [Pubmed]
  9. Interferon gamma and interleukin 4 stimulate prolonged expression of inducible nitric oxide synthase in human airway epithelium through synthesis of soluble mediators. Guo, F.H., Uetani, K., Haque, S.J., Williams, B.R., Dweik, R.A., Thunnissen, F.B., Calhoun, W., Erzurum, S.C. J. Clin. Invest. (1997) [Pubmed]
  10. Widely dispersed p53 mutation in respiratory epithelium. A novel mechanism for field carcinogenesis. Franklin, W.A., Gazdar, A.F., Haney, J., Wistuba, I.I., La Rosa, F.G., Kennedy, T., Ritchey, D.M., Miller, Y.E. J. Clin. Invest. (1997) [Pubmed]
  11. Effect of salmeterol on Pseudomonas aeruginosa infection of respiratory mucosa. Dowling, R.B., Rayner, C.F., Rutman, A., Jackson, A.D., Kanthakumar, K., Dewar, A., Taylor, G.W., Cole, P.J., Johnson, M., Wilson, R. Am. J. Respir. Crit. Care Med. (1997) [Pubmed]
  12. Anti-edema action of formoterol in rat trachea does not depend on capsaicin-sensitive sensory nerves. Sulakvelidze, I., McDonald, D.M. Am. J. Respir. Crit. Care Med. (1994) [Pubmed]
  13. Cleavage of influenza a virus hemagglutinin in human respiratory epithelium is cell associated and sensitive to exogenous antiproteases. Zhirnov, O.P., Ikizler, M.R., Wright, P.F. J. Virol. (2002) [Pubmed]
  14. Effect of dirithromycin on Haemophilus influenzae infection of the respiratory mucosa. Rutman, A., Dowling, R., Wills, P., Feldman, C., Cole, P.J., Wilson, R. Antimicrob. Agents Chemother. (1998) [Pubmed]
  15. Adenoviral E3-14.7K protein in LPS-induced lung inflammation. Harrod, K.S., Mounday, A.D., Whitsett, J.A. Am. J. Physiol. Lung Cell Mol. Physiol. (2000) [Pubmed]
  16. Increased contact time improves adenovirus-mediated CFTR gene transfer to nasal epithelium of CF mice. Jiang, C., Akita, G.Y., Colledge, W.H., Ratcliff, R.A., Evans, M.J., Hehir, K.M., St George, J.A., Wadsworth, S.C., Cheng, S.H. Hum. Gene Ther. (1997) [Pubmed]
  17. Gene transfer for cytokine functional studies in the lung: the multifunctional role of GM-CSF in pulmonary inflammation. Xing, Z., Braciak, T., Ohkawara, Y., Sallenave, J.M., Foley, R., Sime, P.J., Jordana, M., Graham, F.L., Gauldie, J. J. Leukoc. Biol. (1996) [Pubmed]
  18. Nitric oxide decreases surfactant protein A gene expression in H441 cells. Ayad, O., Wong, H.R. Crit. Care Med. (1998) [Pubmed]
  19. Signaling to the epithelium is not sufficient to mediate all of the effects of transforming growth factor beta and bone morphogenetic protein 4 on murine embryonic lung development. Bragg, A.D., Moses, H.L., Serra, R. Mech. Dev. (2001) [Pubmed]
  20. Hepatocyte nuclear factor-3beta limits cellular diversity in the developing respiratory epithelium and alters lung morphogenesis in vivo. Zhou, L., Dey, C.R., Wert, S.E., Yan, C., Costa, R.H., Whitsett, J.A. Dev. Dyn. (1997) [Pubmed]
  21. Autoradiography in fetal golden hamsters treated with tritiated diethylnitrosamine. Reznik-Schüller, H.M., Hague, B.F. J. Natl. Cancer Inst. (1981) [Pubmed]
  22. Eosinophil recruitment into the respiratory epithelium following antigenic challenge in hyper-IgE mice is accompanied by interleukin 5-dependent bronchial hyperresponsiveness. Eum, S.Y., Hailé, S., Lefort, J., Huerre, M., Vargaftig, B.B. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  23. Organ and cell specificity of DNA methylation by N-nitrosomethylamylamine in rats. Koenigsmann, M., Schmerold, I., Jeltsch, W., Ludeke, B., Kleihues, P., Wiessler, M. Cancer Res. (1988) [Pubmed]
  24. Localization and binding of N'-nitrosonornicotine metabolites in the nasal region and in some other tissues of Sprague-Dawley rats. Löfberg, B., Brittebo, E.B., Tjälve, H. Cancer Res. (1982) [Pubmed]
  25. ATP depletion induces a loss of respiratory epithelium functional integrity and down-regulates CFTR (cystic fibrosis transmembrane conductance regulator) expression. Brézillon, S., Zahm, J.M., Pierrot, D., Gaillard, D., Hinnrasky, J., Millart, H., Klossek, J.M., Tümmler, B., Puchelle, E. J. Biol. Chem. (1997) [Pubmed]
  26. Temporal regulation of CFTR expression during ovine lung development: implications for CF gene therapy. Broackes-Carter, F.C., Mouchel, N., Gill, D., Hyde, S., Bassett, J., Harris, A. Hum. Mol. Genet. (2002) [Pubmed]
  27. Effects of formaldehyde on normal xenotransplanted human tracheobronchial epithelium. Ura, H., Nowak, P., Litwin, S., Watts, P., Bonfil, R.D., Klein-Szanto, A.J. Am. J. Pathol. (1989) [Pubmed]
  28. alpha3alpha5beta2-Nicotinic acetylcholine receptor contributes to the wound repair of the respiratory epithelium by modulating intracellular calcium in migrating cells. Tournier, J.M., Maouche, K., Coraux, C., Zahm, J.M., Cloëz-Tayarani, I., Nawrocki-Raby, B., Bonnomet, A., Burlet, H., Lebargy, F., Polette, M., Birembaut, P. Am. J. Pathol. (2006) [Pubmed]
  29. Pathologic changes induced in respiratory tract mucosa by polycyclic hydrocarbons of differing carcinogenic activity. Topping, D.C., Pal, B.C., Martin, D.H., Nelson, F.R., Nettesheim, P. Am. J. Pathol. (1978) [Pubmed]
  30. Characterization of a sulfotransferase from human airways responsible for the 3-O-sulfation of terminal galactose in N-acetyllactosamine-containing mucin carbohydrate chains. Lo-Guidice, J.M., Périni, J.M., Lafitte, J.J., Ducourouble, M.P., Roussel, P., Lamblin, G. J. Biol. Chem. (1995) [Pubmed]
  31. Anti-neutrophil elastase defense of the normal human respiratory epithelial surface provided by the secretory leukoprotease inhibitor. Vogelmeier, C., Hubbard, R.C., Fells, G.A., Schnebli, H.P., Thompson, R.C., Fritz, H., Crystal, R.G. J. Clin. Invest. (1991) [Pubmed]
  32. Expression of CD44 splice variants in normal respiratory epithelium and bronchial carcinomas: no evidence for altered CD44 splicing in metastasis. Givehchian, M., Woerner, S.M., Lacroix, J., Zöller, M., Drings, P., Becker, H., Kayser, K., Ridder, R., von Knebel Doeberitz, M. Oncogene (1996) [Pubmed]
  33. Respiratory syncytical virus-induced chemokine expression in the lower airways: eosinophil recruitment and degranulation. Harrison, A.M., Bonville, C.A., Rosenberg, H.F., Domachowske, J.B. Am. J. Respir. Crit. Care Med. (1999) [Pubmed]
  34. Expression of mRNA for gastrin-releasing peptide receptor by human bronchial epithelial cells. Association with prolonged tobacco exposure and responsiveness to bombesin-like peptides. Siegfried, J.M., DeMichele, M.A., Hunt, J.D., Davis, A.G., Vohra, K.P., Pilewski, J.M. Am. J. Respir. Crit. Care Med. (1997) [Pubmed]
  35. Lung overexpression of the vascular endothelial growth factor gene induces pulmonary edema. Kaner, R.J., Ladetto, J.V., Singh, R., Fukuda, N., Matthay, M.A., Crystal, R.G. Am. J. Respir. Cell Mol. Biol. (2000) [Pubmed]
  36. Cell-specific expression of a Clara cell secretory protein-human growth hormone gene in the bronchiolar epithelium of transgenic mice. Hackett, B.P., Gitlin, J.D. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  37. Blockade of complement inhibits obliterative bronchiolitis in rat tracheal allografts. Kallio, E.A., Lemström, K.B., Häyry, P.J., Ryan, U.S., Koskinen, P.K. Am. J. Respir. Crit. Care Med. (2000) [Pubmed]
  38. Antibody to CD40 ligand inhibits both humoral and cellular immune responses to adenoviral vectors and facilitates repeated administration to mouse airway. Scaria, A., St George, J.A., Gregory, R.J., Noelle, R.J., Wadsworth, S.C., Smith, A.E., Kaplan, J.M. Gene Ther. (1997) [Pubmed]
  39. Effect of inhibition of nitric oxide synthase on Pseudomonas aeruginosa infection of respiratory mucosa in vitro. Dowling, R.B., Newton, R., Robichaud, A., Cole, P.J., Barnes, P.J., Wilson, R. Am. J. Respir. Cell Mol. Biol. (1998) [Pubmed]
 
WikiGenes - Universities