The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Dynamics of tissue oxygenation in isolated rabbit heart as measured with near-infrared spectroscopy.

We investigated the role of myoglobin ( Mb) in supplying O2 to mitochondria during transitions in cardiac workload. Isovolumic rabbit hearts (n = 7) were perfused retrogradely with hemoglobin-free Tyrode solution at 37 degrees C. Coronary venous O2 tension was measured polarographically, and tissue oxygenation was measured with two-wavelength near-infrared spectroscopy (NIRS), both at a time resolution of approximately 2 s. During transitions to anoxia, 68 +/- 2% (SE) of the NIRS signal was due to Mb and the rest to cytochrome oxidase. For heart rate steps from 120 to 190 or 220 beats/min, the NIRS signal decreased significantly by 6.9 +/- 1.3 or 11.1 +/- 2.1% of the full scale, respectively, with response times of 11.0 +/- 0.8 or 9.1 +/- 0.5 s, respectively. The response time of end-capillary O2 concentration ([O2]), estimated from the venous [O2], was 8.6 +/- 0.8 s for 190 beats/min (P < 0.05 vs. NIRS time) or 8.5 +/- 0.9 s for 220 beats/min (P > 0.05). The mean response times of mitochondrial O2 consumption (VO2) were 3.7 +/- 0.7 and 3.6 +/- 0.6 s, respectively. The deoxygenation of oxymyoglobin (MbO2) accounted for only 12-13% of the total decrease in tissue O2, with the rest being physically dissolved O2. During 11% reductions in perfusion flow at 220 beats/min, Mb was 1.5 +/- 0.4% deoxygenated (P < 0.05), despite the high venous PO2 of 377 +/- 17 mmHg, indicating metabolism-perfusion mismatch. We conclude that the contribution of MbO2 to the increase of VO2 during heart rate steps in saline-perfused hearts was small and slow compared with that of physically dissolved O2.[1]

References

  1. Dynamics of tissue oxygenation in isolated rabbit heart as measured with near-infrared spectroscopy. de Groot, B., Zuurbier, C.J., van Beek, J.H. Am. J. Physiol. (1999) [Pubmed]
 
WikiGenes - Universities