The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Excitatory amino acid transporters: a family in flux.

As the most predominant excitatory neurotransmitter, glutamate has the potential to influence the function of most neuronal circuits in the central nervous system. To limit receptor activation during signaling and prevent the overstimulation of glutamate receptors that can trigger excitotoxic mechanisms and cell death, extracellular concentrations of excitatory amino acids are tightly controlled by transport systems on both neurons and glial cells. L-Glutamate is a potent neurotoxin, and the inadequate clearance of excitatory amino acids may contribute to the neurodegeneration seen in a variety of conditions, including epilepsy, ischemia, and amyotrophic lateral sclerosis. To establish the contributions of carrier systems to the etiology of neurological disorders, and to consider their potential utility as therapeutic targets, a detailed understanding of transporter function and pharmacology is required. This review summarizes current knowledge of the structural and functional diversity of excitatory amino acid transporters and explores how they might serve as targets for drug design.[1]

References

  1. Excitatory amino acid transporters: a family in flux. Seal, R.P., Amara, S.G. Annu. Rev. Pharmacol. Toxicol. (1999) [Pubmed]
 
WikiGenes - Universities