The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

EFMR  -  epilepsy, female restricted, with mental...

Homo sapiens

This record was replaced with 57526.
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of EFMR

 

Psychiatry related information on EFMR

 

High impact information on EFMR

  • Advances in molecular biology and genetics have implicated defects in certain types of voltage-gated calcium channels and their ancillary subunits as important players in this form of epilepsy [10].
  • Burst firing is thought to play an important role in the synchronized activity of the thalamus observed in absence epilepsy, but may also underlie a wider range of thalamocortical dysrhythmias [11].
  • Here we report a genetic locus associated with a human syndrome of coexistent generalized epilepsy and paroxysmal dyskinesia on chromosome 10q22 and show that a mutation of the alpha subunit of the BK channel causes this syndrome [12].
  • Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder [12].
  • We propose that enhancement of BK channels in vivo leads to increased excitability by inducing rapid repolarization of action potentials, resulting in generalized epilepsy and paroxysmal dyskinesia by allowing neurons to fire at a faster rate [12].
 

Chemical compound and disease context of EFMR

 

Biological context of EFMR

  • Assignment of the EFMR disease locus (EFMR) to the X chromosome indicates that selective involvement of females in X-linked disease may in some instances result from male sparing rather than male lethality [1].
  • Localization of a gene for partial epilepsy to chromosome 10q [18].
  • Patients with earlier onset tended to have a phenotype of progressive myoclonus epilepsy and larger expansions [7].
  • Current concepts in neurology. Partial epilepsy [19].
  • Vaginal ultrasonography was performed to determine ovarian size, and serum sex-hormone concentrations were measured in 41 women with epilepsy and menstrual disturbances, 57 women with epilepsy and regular menstrual cycles, and 51 normal women [13].
 

Anatomical context of EFMR

 

Associations of EFMR with chemical compounds

 

Physical interactions of EFMR

 

Regulatory relationships of EFMR

  • We performed a case control association study in 155 patients with nonlesional temporal lobe epilepsy and 202 controls and found that PDYN promotor low-expression L-alleles confer an increased risk for temporal lobe epilepsy in patients with a family history for seizures [33].
  • Changes in thyrotropin-releasing hormone levels in hippocampal subregions induced by a model of human temporal lobe epilepsy: effect of partial and complete kindling [34].
  • Reduced cystatin B activity correlates with enhanced cathepsin activity in progressive myoclonus epilepsy [35].
  • In epileptogenesis-related brain areas, including the hippocampus, BDNF is up-regulated in the course of the development of epilepsy and induces a collapse of balanced excitation and inhibition, eventually exerting its epileptogenic effects [36].
  • These findings suggested that Gastrodia elata regulated the AP-1 expression via the JNK signaling pathway in KA-induced epilepsy [37].
 

Other interactions of EFMR

 

Analytical, diagnostic and therapeutic context of EFMR

  • Mutation analyses identified five missense mutations in EFHC1 that cosegregated with epilepsy or EEG polyspike wave in affected members of six unrelated families with JME and did not occur in 382 control individuals [41].
  • The risk of seizure recurrence during drug tapering and after the discontinuation of antiepileptic drug therapy in children with epilepsy is not different whether the medications are tapered over a six-week or a nine-month period [42].
  • As compared with a matched control group, 99 patients with epilepsy but no other initial neurologic impairment were of similar socioeconomic status and had similar rates of passing an examination given after 12 years of school [43].
  • We conducted a population-based retrospective cohort study of 30,420 subjects 16 to 90 years of age, with and without epilepsy or diabetes mellitus [44].
  • Indeed, specific antagonists of NMDA receptors effectively block spatial learning, long-term potentiation and some animal models of chronic epilepsy [45].

References

  1. Epilepsy and mental retardation limited to females: an X-linked dominant disorder with male sparing. Ryan, S.G., Chance, P.F., Zou, C.H., Spinner, N.B., Golden, J.A., Smietana, S. Nat. Genet. (1997) [Pubmed]
  2. A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Steinlein, O.K., Mulley, J.C., Propping, P., Wallace, R.H., Phillips, H.A., Sutherland, G.R., Scheffer, I.E., Berkovic, S.F. Nat. Genet. (1995) [Pubmed]
  3. Risk of recurrent seizures after two unprovoked seizures. Hauser, W.A., Rich, S.S., Lee, J.R., Annegers, J.F., Anderson, V.E. N. Engl. J. Med. (1998) [Pubmed]
  4. Unstable insertion in the 5' flanking region of the cystatin B gene is the most common mutation in progressive myoclonus epilepsy type 1, EPM1. Lafrenière, R.G., Rochefort, D.L., Chrétien, N., Rommens, J.M., Cochius, J.I., Kälviäinen, R., Nousiainen, U., Patry, G., Farrell, K., Söderfeldt, B., Federico, A., Hale, B.R., Cossio, O.H., Sørensen, T., Pouliot, M.A., Kmiec, T., Uldall, P., Janszky, J., Pranzatelli, M.R., Andermann, F., Andermann, E., Rouleau, G.A. Nat. Genet. (1997) [Pubmed]
  5. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B. Wallace, R.H., Wang, D.W., Singh, R., Scheffer, I.E., George, A.L., Phillips, H.A., Saar, K., Reis, A., Johnson, E.W., Sutherland, G.R., Berkovic, S.F., Mulley, J.C. Nat. Genet. (1998) [Pubmed]
  6. Adult neurogenesis: from precursors to network and physiology. Abrous, D.N., Koehl, M., Le Moal, M. Physiol. Rev. (2005) [Pubmed]
  7. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Koide, R., Ikeuchi, T., Onodera, O., Tanaka, H., Igarashi, S., Endo, K., Takahashi, H., Kondo, R., Ishikawa, A., Hayashi, T. Nat. Genet. (1994) [Pubmed]
  8. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Tsirka, S.E., Gualandris, A., Amaral, D.G., Strickland, S. Nature (1995) [Pubmed]
  9. Xenotransplantation for CNS repair: immunological barriers and strategies to overcome them. Brevig, T., Holgersson, J., Widner, H. Trends Neurosci. (2000) [Pubmed]
  10. Voltage-gated calcium channels and idiopathic generalized epilepsies. Khosravani, H., Zamponi, G.W. Physiol. Rev. (2006) [Pubmed]
  11. Molecular physiology of low-voltage-activated t-type calcium channels. Perez-Reyes, E. Physiol. Rev. (2003) [Pubmed]
  12. Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Du, W., Bautista, J.F., Yang, H., Diez-Sampedro, A., You, S.A., Wang, L., Kotagal, P., Lüders, H.O., Shi, J., Cui, J., Richerson, G.B., Wang, Q.K. Nat. Genet. (2005) [Pubmed]
  13. Polycystic ovaries and hyperandrogenism in women taking valproate for epilepsy. Isojärvi, J.I., Laatikainen, T.J., Pakarinen, A.J., Juntunen, K.T., Myllylä, V.V. N. Engl. J. Med. (1993) [Pubmed]
  14. First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Baulac, S., Huberfeld, G., Gourfinkel-An, I., Mitropoulou, G., Beranger, A., Prud'homme, J.F., Baulac, M., Brice, A., Bruzzone, R., LeGuern, E. Nat. Genet. (2001) [Pubmed]
  15. Autoantibodies to glutamic acid decarboxylase in a patient with stiff-man syndrome, epilepsy, and type I diabetes mellitus. Solimena, M., Folli, F., Denis-Donini, S., Comi, G.C., Pozza, G., De Camilli, P., Vicari, A.M. N. Engl. J. Med. (1988) [Pubmed]
  16. A single amino-acid difference confers major pharmacological variation between human and rodent 5-HT1B receptors. Oksenberg, D., Marsters, S.A., O'Dowd, B.F., Jin, H., Havlik, S., Peroutka, S.J., Ashkenazi, A. Nature (1992) [Pubmed]
  17. Excitatory amino acid transporters: a family in flux. Seal, R.P., Amara, S.G. Annu. Rev. Pharmacol. Toxicol. (1999) [Pubmed]
  18. Localization of a gene for partial epilepsy to chromosome 10q. Ottman, R., Risch, N., Hauser, W.A., Pedley, T.A., Lee, J.H., Barker-Cummings, C., Lustenberger, A., Nagle, K.J., Lee, K.S., Scheuer, M.L. Nat. Genet. (1995) [Pubmed]
  19. Current concepts in neurology. Partial epilepsy. Schomer, D.L. N. Engl. J. Med. (1983) [Pubmed]
  20. A randomized, controlled trial of surgery for temporal-lobe epilepsy. Wiebe, S., Blume, W.T., Girvin, J.P., Eliasziw, M. N. Engl. J. Med. (2001) [Pubmed]
  21. Localization of the gene for Cowden disease to chromosome 10q22-23. Nelen, M.R., Padberg, G.W., Peeters, E.A., Lin, A.Y., van den Helm, B., Frants, R.R., Coulon, V., Goldstein, A.M., van Reen, M.M., Easton, D.F., Eeles, R.A., Hodgsen, S., Mulvihill, J.J., Murday, V.A., Tucker, M.A., Mariman, E.C., Starink, T.M., Ponder, B.A., Ropers, H.H., Kremer, H., Longy, M., Eng, C. Nat. Genet. (1996) [Pubmed]
  22. Mutations in NHLRC1 cause progressive myoclonus epilepsy. Chan, E.M., Young, E.J., Ianzano, L., Munteanu, I., Zhao, X., Christopoulos, C.C., Avanzini, G., Elia, M., Ackerley, C.A., Jovic, N.J., Bohlega, S., Andermann, E., Rouleau, G.A., Delgado-Escueta, A.V., Minassian, B.A., Scherer, S.W. Nat. Genet. (2003) [Pubmed]
  23. Mutations in PHF6 are associated with Börjeson-Forssman-Lehmann syndrome. Lower, K.M., Turner, G., Kerr, B.A., Mathews, K.D., Shaw, M.A., Gedeon, A.K., Schelley, S., Hoyme, H.E., White, S.M., Delatycki, M.B., Lampe, A.K., Clayton-Smith, J., Stewart, H., van Ravenswaay, C.M., de Vries, B.B., Cox, B., Grompe, M., Ross, S., Thomas, P., Mulley, J.C., Gécz, J. Nat. Genet. (2002) [Pubmed]
  24. Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huët anomaly). Hoffmann, K., Dreger, C.K., Olins, A.L., Olins, D.E., Shultz, L.D., Lucke, B., Karl, H., Kaps, R., Müller, D., Vayá, A., Aznar, J., Ware, R.E., Sotelo Cruz, N., Lindner, T.H., Herrmann, H., Reis, A., Sperling, K. Nat. Genet. (2002) [Pubmed]
  25. Withdrawal of anticonvulsant drugs in patients free of seizures for two years. A prospective study. Callaghan, N., Garrett, A., Goggin, T. N. Engl. J. Med. (1988) [Pubmed]
  26. Treatment of self-induced photosensitive epilepsy with fenfluramine. Aicardi, J., Gastaut, H. N. Engl. J. Med. (1985) [Pubmed]
  27. N,N-dimethylglycine for epilepsy. Herbert, V. N. Engl. J. Med. (1983) [Pubmed]
  28. Mutant NDUFV1 subunit of mitochondrial complex I causes leukodystrophy and myoclonic epilepsy. Schuelke, M., Smeitink, J., Mariman, E., Loeffen, J., Plecko, B., Trijbels, F., Stöckler-Ipsiroglu, S., van den Heuvel, L. Nat. Genet. (1999) [Pubmed]
  29. Effects of Cav3.2 channel mutations linked to idiopathic generalized epilepsy. Khosravani, H., Bladen, C., Parker, D.B., Snutch, T.P., McRory, J.E., Zamponi, G.W. Ann. Neurol. (2005) [Pubmed]
  30. Clinical characteristics and diagnostic clues in inborn errors of creatine metabolism. Stromberger, C., Bodamer, O.A., Stöckler-Ipsiroglu, S. J. Inherit. Metab. Dis. (2003) [Pubmed]
  31. On the surgical treatment of refractory epilepsy in tuberous sclerosis complex. Baumgartner, J.E., Wheless, J.W., Kulkarni, S., Northrup, H., Au, K.S., Smith, A., Brookshire, B. Pediatric neurosurgery. (1997) [Pubmed]
  32. Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Fukata, Y., Adesnik, H., Iwanaga, T., Bredt, D.S., Nicoll, R.A., Fukata, M. Science (2006) [Pubmed]
  33. A functional polymorphism in the prodynorphin gene promotor is associated with temporal lobe epilepsy. Stögmann, E., Zimprich, A., Baumgartner, C., Aull-Watschinger, S., Höllt, V., Zimprich, F. Ann. Neurol. (2002) [Pubmed]
  34. Changes in thyrotropin-releasing hormone levels in hippocampal subregions induced by a model of human temporal lobe epilepsy: effect of partial and complete kindling. Knoblach, S.M., Kubek, M.J. Neuroscience (1997) [Pubmed]
  35. Reduced cystatin B activity correlates with enhanced cathepsin activity in progressive myoclonus epilepsy. Rinne, R., Saukko, P., Järvinen, M., Lehesjoki, A.E. Ann. Med. (2002) [Pubmed]
  36. To BDNF or not to BDNF: that is the epileptic hippocampus. Koyama, R., Ikegaya, Y. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry. (2005) [Pubmed]
  37. Gastrodia elata modulated activator protein 1 via c-Jun N-terminal kinase signaling pathway in kainic acid-induced epilepsy in rats. Hsieh, C.L., Lin, J.J., Chiang, S.Y., Su, S.Y., Tang, N.Y., Lin, G.G., Lin, I.H., Liu, C.H., Hsiang, C.Y., Chen, J.C., Ho, T.Y. Journal of ethnopharmacology (2007) [Pubmed]
  38. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Singh, N.A., Charlier, C., Stauffer, D., DuPont, B.R., Leach, R.J., Melis, R., Ronen, G.M., Bjerre, I., Quattlebaum, T., Murphy, J.V., McHarg, M.L., Gagnon, D., Rosales, T.O., Peiffer, A., Anderson, V.E., Leppert, M. Nat. Genet. (1998) [Pubmed]
  39. Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Schroeder, B.C., Kubisch, C., Stein, V., Jentsch, T.J. Nature (1998) [Pubmed]
  40. Autosomal dominant nocturnal frontal-lobe epilepsy: genetic heterogeneity and evidence for a second locus at 15q24. Phillips, H.A., Scheffer, I.E., Crossland, K.M., Bhatia, K.P., Fish, D.R., Marsden, C.D., Howell, S.J., Stephenson, J.B., Tolmie, J., Plazzi, G., Eeg-Olofsson, O., Singh, R., Lopes-Cendes, I., Andermann, E., Andermann, F., Berkovic, S.F., Mulley, J.C. Am. J. Hum. Genet. (1998) [Pubmed]
  41. Mutations in EFHC1 cause juvenile myoclonic epilepsy. Suzuki, T., Delgado-Escueta, A.V., Aguan, K., Alonso, M.E., Shi, J., Hara, Y., Nishida, M., Numata, T., Medina, M.T., Takeuchi, T., Morita, R., Bai, D., Ganesh, S., Sugimoto, Y., Inazawa, J., Bailey, J.N., Ochoa, A., Jara-Prado, A., Rasmussen, A., Ramos-Peek, J., Cordova, S., Rubio-Donnadieu, F., Inoue, Y., Osawa, M., Kaneko, S., Oguni, H., Mori, Y., Yamakawa, K. Nat. Genet. (2004) [Pubmed]
  42. Discontinuing antiepileptic drugs in children with epilepsy. A comparison of a six-week and a nine-month taper period. Tennison, M., Greenwood, R., Lewis, D., Thorn, M. N. Engl. J. Med. (1994) [Pubmed]
  43. Long-term prognosis of seizures with onset in childhood. Sillanpää, M., Jalava, M., Kaleva, O., Shinnar, S. N. Engl. J. Med. (1998) [Pubmed]
  44. The effect of epilepsy or diabetes mellitus on the risk of automobile accidents. Hansotia, P., Broste, S.K. N. Engl. J. Med. (1991) [Pubmed]
  45. NMDA receptors of dentate gyrus granule cells participate in synaptic transmission following kindling. Mody, I., Heinemann, U. Nature (1987) [Pubmed]
 
WikiGenes - Universities