Cyanelle RNase P: RNA structure analysis and holoenzyme properties of an organellar ribonucleoprotein enzyme.
The cyanelle of the primitive alga Cyanophora paradoxa is the only photosynthetic organelle where the ribonucleoprotein nature of ribonuclease P has been functionally proven. To increase our knowledge about RNA structure and overall composition of this enzyme, we have now determined relevant physical parameters and performed RNA accessibility experiments. Buoyant density and relative molecular mass of cyanelle RNase P were more similar to the eukaryotic (nuclear or mitochondrial) than to the bacterial enzyme type, despite the close phylogenetic relationship between plastids and cyanobacteria. Enzymatic and chemical probing was used to establish the secondary structure of cyanelle RNase P RNA. The results obtained with the naked transcript support the previously proposed, phylogenetically derived structure. Probing of the RNA in the holoenzyme resulted in reduced sensitivity at a large number of positions, indicating that these regions might be located in the interior of the ribonucleoprotein. Protection of the RNA in cyanelle RNase P was more extensive than reported for the Escherichia coli holoenzyme, but similar to the pattern observed in yeast nuclear RNase P. Taken together, these results indicate that the protein contribution in cyanelle RNase P is much larger than in the bacterial enzymes, and that the overall composition of the holoenzyme resembles that found in eukaryotes.[1]References
- Cyanelle RNase P: RNA structure analysis and holoenzyme properties of an organellar ribonucleoprotein enzyme. Cordier, A., Schön, A. J. Mol. Biol. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg