The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway.

A classically derived tryptophan-producing Corynebacterium glutamicum strain was recently significantly improved both by plasmid-mediated amplification of the genes for the rate-limiting enzymes in the terminal pathways and by construction of a plasmid stabilization system so that it produced more tryptophan. This engineered strain, KY9218 carrying pKW9901, produced 50 g of tryptophan per liter from sucrose after 80 h in fed-batch cultivation without antibiotic pressure. Analysis of carbon balances showed that at the late stage of the fermentation, tryptophan yield decreased with a concomitant increase in CO2 yield, suggesting a transition in the distribution of carbon flow from aromatic biosynthesis toward the tricarboxylic acid cycle via glycolysis. To circumvent this transition by increasing the supply of erythrose 4-phosphate, a direct precursor of aromatic biosynthesis, the transketolase gene of C. glutamicum was coamplified in the engineered strain by using low- and high-copy-number plasmids which were compatible with the resident plasmid pKW9901. The presence of the gene in low copy numbers contributed to improvement of tryptophan yield, especially at the late stage, and led to accumulation of more tryptophan (57 g/liter) than did its absence, while high-copy-number amplification of the gene resulted in a tryptophan production level even lower than that resulting from the absence of the gene due to reduced growth and sugar consumption. In order to assemble all the cloned genes onto a low-copy-number plasmid, the high-copy-number origin of pKW9901 was replaced with the low-copy-number one, generating low-copy-number plasmid pSW9911, and the transketolase gene was inserted to yield pIK9960. The pSW9911-carrying producer showed almost the same fermentation profiles as the pKW9901 carrier in fed-batch cultivation without antibiotic pressure. Under the same culture conditions, however, the pIK9960 carrier achieved a final tryptophan titer of 58 g/liter, which represented a 15% enhancement over the titers achieved by the pKW9901 and pSW9911 carriers.[1]


WikiGenes - Universities