The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Characterization of the glyceraldehyde-3-phosphate dehydrogenase gene [correction of glyceraldehyde-3-phosphate gene] and the use of its promoter for heterologous expression in Cryptococcus neoformans, a human pathogen.

The GPD gene encoding glyceraldehyde-3-phosphate dehydrogenase was isolated from Cryptococcus neoformans, a heterobasidiomycetous yeast that is pathogenic to humans. The gene contains 11 introns, differing from the conserved intron positions found in the GPD genes of Basidiomycetes. The predicted amino-acid sequence of this gene is extremely similar to that reported from GPD proteins of other basidiomycetes. The promoter region of the C. neoformans GPD gene was similar to those of other basidiomycetes. Plasmid constructs containing up to 1600 base pairs upstream of the native GPD open reading frame were used to express either the native URA5 gene in a ura5 mutant or the heterologous hphI gene (a bacterial gene that confers resistance to the aminoglycoside hygromycin) in a wild-type strain of C. neoformans. Transformation frequencies resulting from the plasmid-borne Gpdp::URA5 gene were at levels similar to those of the native URA5, which suggested that all the sequences necessary for proper expression were present. Transformation frequencies using the Gpdp::hphI gene constructs were poor. However, addition of DNA sequences flanking the 3'-end of an native C. neoformans gene significantly improved the transformation frequencies resulting from the expression of the heterologous hphI gene.[1]

References

 
WikiGenes - Universities