The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Domains of Rinderpest virus phosphoprotein involved in interaction with itself and the nucleocapsid protein.

The yeast two-hybrid system was used to identify domains involved in specific in vivo interactions between the Rinderpest virus (RPV) phosphoprotein ( P) and nucleocapsid protein (N). N and P genes were cloned in both the yeast GAL4 DNA-binding and GAL4 activation domain vectors, which enabled analysis of self and interprotein interactions. Mapping of the domain of P protein involved in its association with itself revealed that the COOH-terminal 32 amino acids (316-347) that forms a part of the highly conserved coiled coil region is important for interaction. In addition, just the coiled coil region of RPV P protein fused to the DNA- binding domain and activation domain of GAL4 was found to be sufficient to bring about activation of the beta-galactosidase reporter. Similarly, mapping of the domains of P protein involved in its interaction with N protein revealed that NH2-terminal 59 amino acids and COOH-terminal 32 amino acids (316-347) involved in P- P interaction are simultaneously required for association with N protein. Interestingly, a P protein mutant with just the NH2-terminal 59 amino acids and the coiled coil domain with all other P protein regions deleted retained its ability to interact with N protein. Furthermore, we were able to show N and P protein interaction in vitro using recombinant N and P proteins expressed in Escherichia coli, demonstrating the existence of direct physical interaction between the two proteins.[1]

References

 
WikiGenes - Universities