The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Characterization of novel promoter and enhancer elements of the mouse homologue of the Dent disease gene, CLCN5, implicated in X-linked hereditary nephrolithiasis.

The murine homologue of the human chloride channel gene, CLCN5, defects in which are responsible for Dent disease, has been cloned and characterized. We isolated the entire coding region of mouse Clcn5 cDNA and approximately 45 kb of genomic sequence embracing the gene. To study its transcriptional control, the 5' upstream sequences of the mouse Clcn5 gene were cloned into a luciferase reporter vector. Deletion analysis of 1.5 kb of the 5' flanking sequence defined an active promoter region within 128 bp of the putative transcription start site, which is associated with a TATA motif but lacks a CAAT consensus. Within this sequence, there is a motif with homology to a purine-rich sequence responsible for the kidney-specific promoter activity of the rat CLC-K1 gene, another member of the chloride-channel gene family expressed in kidney. An enhancer element that confers a 10- to 20-fold increase in the promoter activity of the mouse Clcn5 gene was found within the first intron. The organization of the human CLCN5 and mouse Clcn5 gene structures is highly conserved, and the sequence of the murine protein is 98% similar to that of human, with its highest expression seen in the kidney. This study thus provides the first identification of the transcriptional control region of, and the basis for an understanding of the regulatory mechanism that controls, this kidney-specific, chloride-channel gene.[1]


WikiGenes - Universities