The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Two independent mechanisms essential for tumor angiogenesis: inhibition of human melanoma xenograft growth by interfering with either the vascular endothelial growth factor receptor pathway or the Tie-2 pathway.

Protein ligands and receptor tyrosine kinases that specifically regulate endothelial cell function are mainly involved in physiological as well as in disease-related angiogenesis. These ligand/receptor systems include the vascular endothelial growth factor (VEGF) and the angiopoietin ( Ang) families, and their receptors, the VEGF receptor family and the tyrosine kinase with immunoglobulin-like and epidermal growth factor homology domains (Tie) family. In the present study, the contribution of these endothelium-specific ligand/receptor systems to tumor angiogenesis was evaluated. A375v human melanoma cells, which express at least the angiogenic growth factors VEGF, VEGF-C, and Ang-1, were stably transfected to overexpress the extracellular ligand-binding domains of the endothelium-specific receptor tyrosine kinases fms-like tyrosine kinase-1 ( Flt-1), Flt-4, Tie-1, and Tie-2, respectively. In vitro proliferation and colony formation assays confirmed that expression of the extracellular receptor domains inhibited neither tumor cell mitogenesis nor the ability to produce anchorage-independent growth. Nude mouse xenografts revealed that interference with either the VEGF receptor pathway or the Tie-2 pathway resulted in a significant inhibition of tumor growth and tumor angiogenesis. In contrast, interference with the Flt-4 pathway or the Tie-1 pathway was without significant effect. Our results show that both the VEGF receptor pathway and the Tie-2 pathway are essential for A375v melanoma xenograft growth. The inhibition of the VEGF receptor pathway cannot be compensated by the Tie-2 pathway, nor vice versa. These findings suggest that the VEGF receptor pathway and the Tie-2 pathway have to be considered as two independent mediators essential for the process of in vivo angiogenesis.[1]


WikiGenes - Universities