Enhanced detection of oligonucleotides in UV MALDI MS using the tetraamine spermine as a matrix additive.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has been used to analyze oligonucleotides. However, success has been limited by cation adduction and high detection limits. Both of these problems are due to the high net negative charge that oligonucleotides carry on the phosphodiester backbone. Comatrixes such as ammonium salts with UV absorbers such as 3-hydroxypicolinic acid, 2,4,6-trihydroxyacetophenone, and 6-aza-2-thiothymine have been used to improve the spectral quality for oligonucleotides in MALDI MS. Organic bases have also been used as co-matrixes; however, the most popular matrix, 3-hydroxypicolinic acid, is not compatible with these additives. We have found that the tetraamine spermine as a matrix additive can successfully eliminate cation adduction and lower the detection limits for DNA in the MALDI experiment, without having to resort to desalting steps. The results suggest that multiply protonated spermine molecules function better than ammonium ions in neutralizing oligonucleotides and displacing alkali cations. Protonated spermine is chemically similar to ammonium ions since it binds to the phosphate backbone and releases protons to the phosphate groups. Spermine can be used successfully with the matrixes 6-aza-2-thiothymine and 80% anthranilic acid/20% nicotinic acid but not with 3-hydroxypicolinic acid. The additive also works well for the analysis of metalated DNA.[1]References
- Enhanced detection of oligonucleotides in UV MALDI MS using the tetraamine spermine as a matrix additive. Asara, J.M., Allison, J. Anal. Chem. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg