The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Skeletal unloading induces biphasic changes in insulin-like growth factor-I mRNA levels and osteoblast activity.

To determine the local mechanisms involved in the effects of skeletal unloading on bone formation, we studied the temporal pattern of mRNA levels for insulin-like growth factor-I (IGF-I), IGF-I receptor type I (IGF-IR), and transforming growth factor beta receptor type II (TGF-betaRII) in relation to osteoblast phenotypic markers and osteoblast activity in hindlimb suspended rats. Skeletal unloading decreased bone volume and the mineralizing and osteoblastic surfaces at 4, 7, and 14 days in the tibial metaphysis, whereas the mineral appositional rate returned to normal at 14 days of suspension. RT-PCR analysis showed that skeletal unloading decreased type 1 collagen (Col 1) and osteocalcin (OC) mRNA levels in metaphyseal bone at days 4 and 7, and the levels returned to normal at 14 days of suspension. Unloading also decreased mRNA levels for IGF-I, IGF-IR, and TGF-betaRII at 4-7 days in the metaphyseal bone. However, IGF-I and IGF-IR levels rose above normal at 14 days of suspension. The biphasic changes in IGF-I mRNA levels were strongly correlated with Col 1 and OC mRNA levels. The associated biphasic pattern of IGF-I/IGF-IR expression, osteoblast markers, and osteoblast activity strongly suggests an important role for IGF-I signaling in the local effect of skeletal unloading on metaphyseal bone formation.[1]

References

  1. Skeletal unloading induces biphasic changes in insulin-like growth factor-I mRNA levels and osteoblast activity. Drissi, H., Lomri, A., Lasmoles, F., Holy, X., Zerath, E., Marie, P.J. Exp. Cell Res. (1999) [Pubmed]
 
WikiGenes - Universities