The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Osteogenesis


Psychiatry related information on Osteogenesis


High impact information on Osteogenesis


Chemical compound and disease context of Osteogenesis


Biological context of Osteogenesis

  • 1 alpha,25-Dihydroxyvitamin D3[1 alpha,25(OH)2D3], an active form of vitamin D, has roles in many biological phenomena such as calcium homeostasis and bone formation, which are thought to be mediated by the 1 alpha,25(OH)2D3 receptor (VDR), a member of the nuclear hormone receptor superfamily [18].
  • These results demonstrate that src is not required for general cell viability (possibly because of functional overlap with other tyrosine kinases related to src) and uncover an essential role for src in bone formation [19].
  • Analysis of embryonic Cbfa1 expression using a lacZ reporter gene revealed strong expression at sites of bone formation prior to the earliest stages of ossification [20].
  • The BMP-7-binding affinity of site-specific variants of Noggin is correlated with alterations in bone formation and apoptosis in chick limb development, showing that Noggin functions by sequestering its ligand in an inactive complex [21].
  • TGF-beta 2 is involved in wound healing, bone formation and modulation of immune functions [22].

Anatomical context of Osteogenesis


Associations of Osteogenesis with chemical compounds

  • In contrast, the dynamic measurements, determined with tetracycline markers, showed that the mean rate of bone formation in the blacks was only 35 percent of that in the whites (P less than 0.001) [27].
  • Cyclic administration of pamidronate in children with severe osteogenesis imperfecta [2].
  • Microradiography and videodensitometry studies revealed significant increases in bone formation (P less than 0.01) and bone mass (P less than 0.005) in the fluoride-calcium group [28].
  • We conclude that aluminum deposition is associated with impaired bone formation or mineralization and with a poor response to calcitriol therapy [29].
  • To ascertain if the features of osteogenesis imperfecta could be due to an abnormality in two genetically distinct collagens, Type III and Type I, we measured, in pepsin digests of skin, the ratio of the alpha 1, (III) to alpha 1 (I) chains derived from the two types, using a method of interrupted polyacrylamide-gel electrophoresis [30].

Gene context of Osteogenesis


Analytical, diagnostic and therapeutic context of Osteogenesis


  1. TSH is a negative regulator of skeletal remodeling. Abe, E., Marians, R.C., Yu, W., Wu, X.B., Ando, T., Li, Y., Iqbal, J., Eldeiry, L., Rajendren, G., Blair, H.C., Davies, T.F., Zaidi, M. Cell (2003) [Pubmed]
  2. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. Glorieux, F.H., Bishop, N.J., Plotkin, H., Chabot, G., Lanoue, G., Travers, R. N. Engl. J. Med. (1998) [Pubmed]
  3. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Jochum, W., David, J.P., Elliott, C., Wutz, A., Plenk, H., Matsuo, K., Wagner, E.F. Nat. Med. (2000) [Pubmed]
  4. Painful diffuse osteosclerosis after intravenous drug abuse. Villareal, D.T., Murphy, W.A., Teitelbaum, S.L., Arens, M.Q., Whyte, M.P. Am. J. Med. (1992) [Pubmed]
  5. Effect of exercise on bone: permissive influence of estrogen and calcium. Dalsky, G.P. Medicine and science in sports and exercise. (1990) [Pubmed]
  6. Effects of parathyroid hormone on bone formation in a rat model for chronic alcohol abuse. Turner, R.T., Evans, G.L., Zhang, M., Sibonga, J.D. Alcohol. Clin. Exp. Res. (2001) [Pubmed]
  7. Possible mechanisms of osteopenia in Rett syndrome: bone histomorphometric studies. Budden, S.S., Gunness, M.E. J. Child Neurol. (2003) [Pubmed]
  8. Introduction to the reviews on neuropeptide Y. Gehlert, D.R. Neuropeptides (2004) [Pubmed]
  9. Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Li, X., Liu, P., Liu, W., Maye, P., Zhang, J., Zhang, Y., Hurley, M., Guo, C., Boskey, A., Sun, L., Harris, S.E., Rowe, D.W., Ke, H.Z., Wu, D. Nat. Genet. (2005) [Pubmed]
  10. A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse. Aubin, I., Adams, C.P., Opsahl, S., Septier, D., Bishop, C.E., Auge, N., Salvayre, R., Negre-Salvayre, A., Goldberg, M., Guénet, J.L., Poirier, C. Nat. Genet. (2005) [Pubmed]
  11. The molecular clock mediates leptin-regulated bone formation. Fu, L., Patel, M.S., Bradley, A., Wagner, E.F., Karsenty, G. Cell (2005) [Pubmed]
  12. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Nakashima, K., Zhou, X., Kunkel, G., Zhang, Z., Deng, J.M., Behringer, R.R., de Crombrugghe, B. Cell (2002) [Pubmed]
  13. Estrogen maintains trabecular bone volume in rats not only by suppression of bone resorption but also by stimulation of bone formation. Chow, J., Tobias, J.H., Colston, K.W., Chambers, T.J. J. Clin. Invest. (1992) [Pubmed]
  14. Comparison of alendronate and sodium fluoride effects on cancellous and cortical bone in minipigs. A one-year study. Lafage, M.H., Balena, R., Battle, M.A., Shea, M., Seedor, J.G., Klein, H., Hayes, W.C., Rodan, G.A. J. Clin. Invest. (1995) [Pubmed]
  15. Interleukin-1 receptor antagonist decreases bone loss and bone resorption in ovariectomized rats. Kimble, R.B., Vannice, J.L., Bloedow, D.C., Thompson, R.C., Hopfer, W., Kung, V.T., Brownfield, C., Pacifici, R. J. Clin. Invest. (1994) [Pubmed]
  16. Increase in serum bone gamma-carboxyglutamic acid protein with aging in women. Implications for the mechanism of age-related bone loss. Delmas, P.D., Stenner, D., Wahner, H.W., Mann, K.G., Riggs, B.L. J. Clin. Invest. (1983) [Pubmed]
  17. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. Falahati-Nini, A., Riggs, B.L., Atkinson, E.J., O'Fallon, W.M., Eastell, R., Khosla, S. J. Clin. Invest. (2000) [Pubmed]
  18. Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Yoshizawa, T., Handa, Y., Uematsu, Y., Takeda, S., Sekine, K., Yoshihara, Y., Kawakami, T., Arioka, K., Sato, H., Uchiyama, Y., Masushige, S., Fukamizu, A., Matsumoto, T., Kato, S. Nat. Genet. (1997) [Pubmed]
  19. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Soriano, P., Montgomery, C., Geske, R., Bradley, A. Cell (1991) [Pubmed]
  20. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Otto, F., Thornell, A.P., Crompton, T., Denzel, A., Gilmour, K.C., Rosewell, I.R., Stamp, G.W., Beddington, R.S., Mundlos, S., Olsen, B.R., Selby, P.B., Owen, M.J. Cell (1997) [Pubmed]
  21. Structural basis of BMP signalling inhibition by the cystine knot protein Noggin. Groppe, J., Greenwald, J., Wiater, E., Rodriguez-Leon, J., Economides, A.N., Kwiatkowski, W., Affolter, M., Vale, W.W., Belmonte, J.C., Choe, S. Nature (2002) [Pubmed]
  22. An unusual feature revealed by the crystal structure at 2.2 A resolution of human transforming growth factor-beta 2. Schlunegger, M.P., Grütter, M.G. Nature (1992) [Pubmed]
  23. Leptin regulates bone formation via the sympathetic nervous system. Takeda, S., Elefteriou, F., Levasseur, R., Liu, X., Zhao, L., Parker, K.L., Armstrong, D., Ducy, P., Karsenty, G. Cell (2002) [Pubmed]
  24. Overexpression of an osteogenic morphogen in fibrodysplasia ossificans progressiva. Shafritz, A.B., Shore, E.M., Gannon, F.H., Zasloff, M.A., Taub, R., Muenke, M., Kaplan, F.S. N. Engl. J. Med. (1996) [Pubmed]
  25. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Ducy, P., Amling, M., Takeda, S., Priemel, M., Schilling, A.F., Beil, F.T., Shen, J., Vinson, C., Rueger, J.M., Karsenty, G. Cell (2000) [Pubmed]
  26. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Gerber, H.P., Vu, T.H., Ryan, A.M., Kowalski, J., Werb, Z., Ferrara, N. Nat. Med. (1999) [Pubmed]
  27. Diminished rates of bone formation in normal black adults. Weinstein, R.S., Bell, N.H. N. Engl. J. Med. (1988) [Pubmed]
  28. Multiple-myeloma bone disease. The comparative effect of sodium fluoride and calcium carbonate or placebo. Kyle, R.A., Jowsey, J., Kelly, P.J., Taves, D.R. N. Engl. J. Med. (1975) [Pubmed]
  29. The prevalence of bone aluminum deposition in renal osteodystrophy and its relation to the response to calcitriol therapy. Ott, S.M., Maloney, N.A., Coburn, J.W., Alfrey, A.C., Sherrard, D.J. N. Engl. J. Med. (1982) [Pubmed]
  30. Altered relation of two collagen types in osteogenesis imperfecta. Sykes, B., Francis, M.J., Smith, R. N. Engl. J. Med. (1977) [Pubmed]
  31. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Satokata, I., Ma, L., Ohshima, H., Bei, M., Woo, I., Nishizawa, K., Maeda, T., Takano, Y., Uchiyama, M., Heaney, S., Peters, H., Tang, Z., Maxson, R., Maas, R. Nat. Genet. (2000) [Pubmed]
  32. NFAT and Osterix cooperatively regulate bone formation. Koga, T., Matsui, Y., Asagiri, M., Kodama, T., de Crombrugghe, B., Nakashima, K., Takayanagi, H. Nat. Med. (2005) [Pubmed]
  33. Novel regulators of bone formation: molecular clones and activities. Wozney, J.M., Rosen, V., Celeste, A.J., Mitsock, L.M., Whitters, M.J., Kriz, R.W., Hewick, R.M., Wang, E.A. Science (1988) [Pubmed]
  34. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Vortkamp, A., Lee, K., Lanske, B., Segre, G.V., Kronenberg, H.M., Tabin, C.J. Science (1996) [Pubmed]
  35. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. Weinstein, R.S., Jilka, R.L., Parfitt, A.M., Manolagas, S.C. J. Clin. Invest. (1998) [Pubmed]
  36. Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. Weitzmann, M.N., Roggia, C., Toraldo, G., Weitzmann, L., Pacifici, R. J. Clin. Invest. (2002) [Pubmed]
  37. Cbfa1 in bone development. Komori, T., Kishimoto, T. Curr. Opin. Genet. Dev. (1998) [Pubmed]
  38. Accumulation, localization, and compartmentation of transforming growth factor beta during endochondral bone development. Carrington, J.L., Roberts, A.B., Flanders, K.C., Roche, N.S., Reddi, A.H. J. Cell Biol. (1988) [Pubmed]
  39. Importance of geometry of the extracellular matrix in endochondral bone differentiation. Sampath, T.K., Reddi, A.H. J. Cell Biol. (1984) [Pubmed]
WikiGenes - Universities