The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Hindlimb Suspension

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Hindlimb Suspension

 

Psychiatry related information on Hindlimb Suspension

 

High impact information on Hindlimb Suspension

 

Chemical compound and disease context of Hindlimb Suspension

  • These results confirm the sensitivity of the tail suspension test and indicate that serotonin uptake inhibitors probably decrease immobility and reduce locomotor activity through different mechanisms [12].
  • We found that the duration of immobility in the tail suspension test (TST) was significantly increased in MPTP-treated C57BL/6 mice as compared with control mice without a significant change in the locomotor activity (LA) [13].
 

Biological context of Hindlimb Suspension

 

Anatomical context of Hindlimb Suspension

 

Associations of Hindlimb Suspension with chemical compounds

  • We conclude that alendronate prevents the relative loss of mineralized tissue in growing rats subjected to skeletal unloading, but it does so primarily by inhibiting the resorption of the primary and secondary spongiosa, leading to altered bone modeling in the metaphysis [14].
  • These results demonstrate that tail suspension reduces the growth-induced periosteal modelling drift and that the antiresorptive agent pamidronate is unable to restore normal periosteal bone apposition [24].
  • RESULTS: Serotonin transporter knockout mice showed an increase in latency to feed in a novel situation, more immobility in a forced swim, increased escape latency in a shock escape paradigm, and decreased immobility in tail suspension [25].
  • The selective serotonin reuptake inhibitor citalopram, a widely used antidepressant, decreased immobility in both 5-HT7+/+ and 5-HT7-/- mice in the tail suspension test, suggesting that it utilizes an independent mechanism [26].
  • In the present study, the antidepressant-like effect mediated by the activation of 5-HT(1A) receptors was examined using the tail suspension test in streptozotocin-induced diabetic mice [27].
 

Gene context of Hindlimb Suspension

  • We speculate that the loss of osteogenic potential after skeletal unloading is caused by the suppression of PECAM-1 signaling on endothelial cellular surface [10].
  • These results suggest that modulations of RANKL and OPG expression in stromal cells might be one of the causes of bone loss during skeletal unloading [28].
  • In contrast, although NK1R-/- mice also exhibited an increase in the duration of struggle behaviour in the tail suspension test, this was not observed following pharmacological blockade with L-760735 in gerbils or GR205171 in mice, suggesting that this may reflect a developmental alteration in the knockout mouse [29].
  • In depression-related paradigms, Tac1-deficient mice were more active in the Porsolt's forced-swimming test and the tail-suspension test, and they did not become hyperactive after bulbectomy [30].
  • These results suggest that the tail suspension assay may have utility to identify CRF1 receptor antagonists with antidepressant-like activity [31].
 

Analytical, diagnostic and therapeutic context of Hindlimb Suspension

References

  1. Preclinical pharmacology of F-98214-TA, a novel potent serotonin and norepinephrine uptake inhibitor with antidepressant and anxiolytic properties. Artaiz, I., Zazpe, A., Innerárity, A., Del Olmo, E., Díaz, A., Ruiz-Ortega, J.A., Castro, E., Pena, R., Labeaga, L., Pazos, A., Orjales, A. Psychopharmacology (Berl.) (2005) [Pubmed]
  2. Lactate uptake by skeletal muscle sarcolemmal vesicles decreases after 4 wk of hindlimb unweighting in rats. Dubouchaud, H., Granier, P., Mercier, J., Le Peuch, C., Prefaut, C. J. Appl. Physiol. (1996) [Pubmed]
  3. Active hexose correlated compound enhances resistance to Klebsiella pneumoniae infection in mice in the hindlimb-unloading model of spaceflight conditions. Aviles, H., Belay, T., Fountain, K., Vance, M., Sun, B., Sonnenfeld, G. J. Appl. Physiol. (2003) [Pubmed]
  4. Animal models of depression: utility for transgenic research. Porsolt, R.D. Reviews in the neurosciences. (2000) [Pubmed]
  5. Antidepressant-like effects of p-synephrine in mouse models of immobility tests. Song, D.K., Suh, H.W., Jung, J.S., Wie, M.B., Son, K.H., Kim, Y.H. Neurosci. Lett. (1996) [Pubmed]
  6. Acute stress enhances anxiolytic-like drug responses of mice tested in a black and white test box. Sánchez, C. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology. (1997) [Pubmed]
  7. Behavioral neurotoxicity in adolescent and adult mice exposed to fenproporex during pregnancy. Moreira, C.Q., Faria, M.J., Moreira, E.G. Human & experimental toxicology. (2005) [Pubmed]
  8. Enhancement of osteoclastic bone resorption and suppression of osteoblastic bone formation in response to reduced mechanical stress do not occur in the absence of osteopontin. Ishijima, M., Rittling, S.R., Yamashita, T., Tsuji, K., Kurosawa, H., Nifuji, A., Denhardt, D.T., Noda, M. J. Exp. Med. (2001) [Pubmed]
  9. Behavioral, neurochemical, and electrophysiological characterization of a genetic mouse model of depression. El Yacoubi, M., Bouali, S., Popa, D., Naudon, L., Leroux-Nicollet, I., Hamon, M., Costentin, J., Adrien, J., Vaugeois, J.M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  10. Reduced expression of platelet endothelial cell adhesion molecule-1 in bone marrow cells in mice after skeletal unloading. Sakuma-Zenke, M., Sakai, A., Nakayamada, S., Kunugita, N., Tabata, T., Uchida, S., Tanaka, S., Mori, T., Nakai, K., Tanaka, Y., Nakamura, T. J. Bone Miner. Res. (2005) [Pubmed]
  11. Skeletal unloading induces resistance to insulin-like growth factor-I (IGF-I) by inhibiting activation of the IGF-I signaling pathways. Sakata, T., Wang, Y., Halloran, B.P., Elalieh, H.Z., Cao, J., Bikle, D.D. J. Bone Miner. Res. (2004) [Pubmed]
  12. Activity of litoxetine and other serotonin uptake inhibitors in the tail suspension test in mice. Perrault, G., Morel, E., Zivkovic, B., Sanger, D.J. Pharmacol. Biochem. Behav. (1992) [Pubmed]
  13. Neural mechanisms underlying motor dysfunction as detected by the tail suspension test in MPTP-treated C57BL/6 mice. Mori, A., Ohashi, S., Nakai, M., Moriizumi, T., Mitsumoto, Y. Neurosci. Res. (2005) [Pubmed]
  14. Alendronate increases skeletal mass of growing rats during unloading by inhibiting resorption of calcified cartilage. Bikle, D.D., Morey-Holton, E.R., Doty, S.B., Currier, P.A., Tanner, S.J., Halloran, B.P. J. Bone Miner. Res. (1994) [Pubmed]
  15. Cysteine supplementation prevents unweighting-induced ubiquitination in association with redox regulation in rat skeletal muscle. Ikemoto, M., Nikawa, T., Kano, M., Hirasaka, K., Kitano, T., Watanabe, C., Tanaka, R., Yamamoto, T., Kamada, M., Kishi, K. Biol. Chem. (2002) [Pubmed]
  16. Effects of the total extract and fractions of Hypericum perforatum in animal assays for antidepressant activity. Butterweck, V., Wall, A., Liefländer-Wulf, U., Winterhoff, H., Nahrstedt, A. Pharmacopsychiatry (1997) [Pubmed]
  17. Hindlimb suspension increases insulin binding and glucose metabolism. Bonen, A., Elder, G.C., Tan, M.H. J. Appl. Physiol. (1988) [Pubmed]
  18. Transforming growth factor-beta2 mRNA level in unloaded bone analyzed by quantitative in situ hybridization. Zhang, R., Supowit, S.C., Hou, X., Simmons, D.J. Calcif. Tissue Int. (1999) [Pubmed]
  19. Rat tail suspension reduces messenger RNA level for growth factors and osteopontin and decreases the osteoblastic differentiation of bone marrow stromal cells. Zhang, R., Supowit, S.C., Klein, G.L., Lu, Z., Christensen, M.D., Lozano, R., Simmons, D.J. J. Bone Miner. Res. (1995) [Pubmed]
  20. Disruption of the p53 gene results in preserved trabecular bone mass and bone formation after mechanical unloading. Sakai, A., Sakata, T., Tanaka, S., Okazaki, R., Kunugita, N., Norimura, T., Nakamura, T. J. Bone Miner. Res. (2002) [Pubmed]
  21. Skeletal unloading induces biphasic changes in insulin-like growth factor-I mRNA levels and osteoblast activity. Drissi, H., Lomri, A., Lasmoles, F., Holy, X., Zerath, E., Marie, P.J. Exp. Cell Res. (1999) [Pubmed]
  22. Quantitative changes of GABA-immunoreactive cells in the hindlimb representation of the rat somatosensory cortex after 14-day hindlimb unloading by tail suspension. D'Amelio, F., Fox, R.A., Wu, L.C., Daunton, N.G. J. Neurosci. Res. (1996) [Pubmed]
  23. Active hexose correlated compound enhances the immune function of mice in the hindlimb-unloading model of spaceflight conditions. Aviles, H., Belay, T., Vance, M., Sun, B., Sonnenfeld, G. J. Appl. Physiol. (2004) [Pubmed]
  24. Inhibition of bone resorption by pamidronate cannot restore normal gain in cortical bone mass and strength in tail-suspended rapidly growing rats. Kodama, Y., Nakayama, K., Fuse, H., Fukumoto, S., Kawahara, H., Takahashi, H., Kurokawa, T., Sekiguchi, C., Nakamura, T., Matsumoto, T. J. Bone Miner. Res. (1997) [Pubmed]
  25. Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Lira, A., Zhou, M., Castanon, N., Ansorge, M.S., Gordon, J.A., Francis, J.H., Bradley-Moore, M., Lira, J., Underwood, M.D., Arango, V., Kung, H.F., Hofer, M.A., Hen, R., Gingrich, J.A. Biol. Psychiatry (2003) [Pubmed]
  26. 5-HT7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern. Hedlund, P.B., Huitron-Resendiz, S., Henriksen, S.J., Sutcliffe, J.G. Biol. Psychiatry (2005) [Pubmed]
  27. Diabetes attenuates the antidepressant-like effect mediated by the activation of 5-HT1A receptor in the mouse tail suspension test. Miyata, S., Hirano, S., Kamei, J. Neuropsychopharmacology (2004) [Pubmed]
  28. Vector-averaged gravity regulates gene expression of receptor activator of NF-kappaB (RANK) ligand and osteoprotegerin in bone marrow stromal cells via cyclic AMP/protein kinase A pathway. Kanematsu, M., Yoshimura, K., Takaoki, M., Sato, A. Bone (2002) [Pubmed]
  29. Comparison of the phenotype of NK1R-/- mice with pharmacological blockade of the substance P (NK1 ) receptor in assays for antidepressant and anxiolytic drugs. Rupniak, N.M., Carlson, E.J., Webb, J.K., Harrison, T., Porsolt, R.D., Roux, S., de Felipe, C., Hunt, S.P., Oates, B., Wheeldon, A. Behavioural pharmacology. (2001) [Pubmed]
  30. Diminished anxiety- and depression-related behaviors in mice with selective deletion of the Tac1 gene. Bilkei-Gorzo, A., Racz, I., Michel, K., Zimmer, A. J. Neurosci. (2002) [Pubmed]
  31. Antidepressant-like activity of corticotropin-releasing factor type-1 receptor antagonists in mice. Nielsen, D.M., Carey, G.J., Gold, L.H. Eur. J. Pharmacol. (2004) [Pubmed]
  32. Agmatine produces antidepressant-like effects in two models of depression in mice. Zomkowski, A.D., Hammes, L., Lin, J., Calixto, J.B., Santos, A.R., Rodrigues, A.L. Neuroreport (2002) [Pubmed]
  33. Oral administration of calcium hydroxide stimulates bone metabolism in the femoral diaphysis of rats with skeletal unloading. Yamaguchi, M., Shimokawa, N., Hoshi, T. Chem. Pharm. Bull. (1991) [Pubmed]
  34. Electrotherapy in mice: dopaminergic and noradrenergic effects in the Tail Suspension Test. Teste, J.F., Martin, I., Rinjard, P. Fundamental & clinical pharmacology. (1990) [Pubmed]
  35. Antibodies to glutamate as neuromodulators of behavioral reactions in mice with various genotypes. Vetrile, L.A., Basharova, L.A., Mikovskaya, O.I., Trekova, N.A., Evseev, V.A. Bull. Exp. Biol. Med. (2002) [Pubmed]
  36. Sex differences in blood constituents of rats following tail suspension. Nakaya, M., Ikawa, S., Kosugi, K., Takeuchi, S. Physiologist (1990) [Pubmed]
 
WikiGenes - Universities