The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

In-vitro and in-vivo action of cannabinoids.

The discovery of endocannabinoids such as anandamide and the wide spread localization of cannabinoid receptors in the brain and peripheral tissues, suggests that the cannabinoid system represents a previously unrecognized ubiquitous net work in the nervous system, whose physiology and function is unfolding. In this study, we tested the hypothesis that some of the actions of anandamide are independent of a cannabinoid receptor mechanism. This was accomplished by the use of cannabinoid agonist and antagonist interaction in an in-vitro and in-vivo test systems. In-vitro, we used Xenopus laevis oocytes expression system and two-voltage clamp technique in combination with differential display polymerase chain reaction to determine whether the differential display of genes following treatment with anandamide may be linked to AMPA glutamate receptor. The differential expression of genes in vivo after the sub-acute administration of anandamide could not be directly linked with the AMPA glutamate receptor. In the voltage clamp studies we investigated the effects of anandamide on recombinant AMPA GluR3 subunit currents generated by kainic acid in oocytes expressing the AMPA glutamate receptor. In the in-vitro studies, we present evidence that anandamide inhibited the kainate activated currents in oocytes expressing AMPA glutamate receptor involves cAMP transduction via a cannabinoid receptor independent mechanism. In the in-vivo studies, SR141716A, the CB1 antagonist, induced anxiolysis, that was dependent on the mouse strain used in the anxiety model and blocked the anxiogenic effects of anandamide or methanandamide whereas SR141716A had no effect on the anandamide inhibition of kainate activated currents in-vitro.[1]

References

  1. In-vitro and in-vivo action of cannabinoids. Akinshola, B.E., Chakrabarti, A., Onaivi, E.S. Neurochem. Res. (1999) [Pubmed]
 
WikiGenes - Universities