The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

methanandamide     (5Z,8Z,11Z,14Z)-N-[(2R)-1- hydroxypropan-2...

Synonyms: CHEMBL120526, AM-356, M186_SIGMA, BSPBio_001285, CHEBI:298864, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of LMFA08020040


High impact information on LMFA08020040

  • Hypotonic reduction of AQP5 was blocked by ruthenium red, methanandamide, and miconazole, agents that inhibit the cation channel transient receptor potential vanilloid (TRPV) 4 present in lung epithelial cells [5].
  • Finally, immunohistochemical analyses by confocal microscopy revealed that adult neurogenesis in dentate gyrus was significantly decreased by the AEA analogue methanandamide and increased by the CB(1) antagonist SR141716 [6].
  • Comparable results were obtained with the more stable anand-amide derivative methanandamide (20 microM; 20 +/- 2% decrease in WT; 4 +/- 6% increase in TASK-1-/-) [7].
  • Here we show for the first time that the intravenous administration of anandamide, an endogenous ligand for cannabinoid receptors, and its longer-lasting synthetic analog methanandamide, increase the extracellular dopamine levels in the nucleus accumbens shell of awake, freely moving rats, an effect characteristic of most drugs abused by humans [8].
  • However, methanandamide-treated cells showed a 12-fold increase in claudin-5 expression and a 2- to 3-fold increase in claudin-3, consistent with the notion that specific changes in claudin expression levels may correlate with changes in alveolar epithelial barrier function [9].

Chemical compound and disease context of LMFA08020040


Biological context of LMFA08020040


Anatomical context of LMFA08020040


Associations of LMFA08020040 with other chemical compounds


Gene context of LMFA08020040


Analytical, diagnostic and therapeutic context of LMFA08020040


  1. Cannabinoids inhibit emesis through CB1 receptors in the brainstem of the ferret. Van Sickle, M.D., Oland, L.D., Ho, W., Hillard, C.J., Mackie, K., Davison, J.S., Sharkey, K.A. Gastroenterology (2001) [Pubmed]
  2. Anandamide-induced vasorelaxation in rabbit aortic rings has two components: G protein dependent and independent. Mukhopadhyay, S., Chapnick, B.M., Howlett, A.C. Am. J. Physiol. Heart Circ. Physiol. (2002) [Pubmed]
  3. Anandamide and methanandamide induce both vanilloid VR1- and cannabinoid CB1 receptor-mediated changes in heart rate and blood pressure in anaesthetized rats. Malinowska, B., Kwolek, G., Göthert, M. Naunyn Schmiedebergs Arch. Pharmacol. (2001) [Pubmed]
  4. Methanandamide increases COX-2 expression and tumor growth in murine lung cancer. Gardner, B., Zhu, L.X., Sharma, S., Tashkin, D.P., Dubinett, S.M. FASEB J. (2003) [Pubmed]
  5. Transient receptor potential vanilloid 4 regulates aquaporin-5 abundance under hypotonic conditions. Sidhaye, V.K., Güler, A.D., Schweitzer, K.S., D'Alessio, F., Caterina, M.J., King, L.S. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  6. The endocannabinoid anandamide inhibits neuronal progenitor cell differentiation through attenuation of the Rap1/B-Raf/ERK pathway. Rueda, D., Navarro, B., Martinez-Serrano, A., Guzman, M., Galve-Roperh, I. J. Biol. Chem. (2002) [Pubmed]
  7. The contribution of TWIK-related acid-sensitive K+-containing channels to the function of dorsal lateral geniculate thalamocortical relay neurons. Meuth, S.G., Aller, M.I., Munsch, T., Schuhmacher, T., Seidenbecher, T., Meuth, P., Kleinschnitz, C., Pape, H.C., Wiendl, H., Wisden, W., Budde, T. Mol. Pharmacol. (2006) [Pubmed]
  8. Anandamide administration alone and after inhibition of fatty acid amide hydrolase (FAAH) increases dopamine levels in the nucleus accumbens shell in rats. Solinas, M., Justinova, Z., Goldberg, S.R., Tanda, G. J. Neurochem. (2006) [Pubmed]
  9. Heterogeneity of claudin expression by alveolar epithelial cells. Wang, F., Daugherty, B., Keise, L.L., Wei, Z., Foley, J.P., Savani, R.C., Koval, M. Am. J. Respir. Cell Mol. Biol. (2003) [Pubmed]
  10. Regional differences in anandamide- and methanandamide-induced membrane potential changes in rat mesenteric arteries. Vanheel, B., Van de Voorde, J. J. Pharmacol. Exp. Ther. (2001) [Pubmed]
  11. Fatty acid amide hydrolase (-/-) mice exhibit an increased sensitivity to the disruptive effects of anandamide or oleamide in a working memory water maze task. Varvel, S.A., Cravatt, B.F., Engram, A.E., Lichtman, A.H. J. Pharmacol. Exp. Ther. (2006) [Pubmed]
  12. Cannabinoid inhibition of guinea-pig intestinal peristalsis via inhibition of excitatory and activation of inhibitory neural pathways. Heinemann, A., Shahbazian, A., Holzer, P. Neuropharmacology (1999) [Pubmed]
  13. The endothelial component of cannabinoid-induced relaxation in rabbit mesenteric artery depends on gap junctional communication. Chaytor, A.T., Martin, P.E., Evans, W.H., Randall, M.D., Griffith, T.M. J. Physiol. (Lond.) (1999) [Pubmed]
  14. Cannabinoid CB1 receptors fail to cause relaxation, but couple via Gi/Go to the inhibition of adenylyl cyclase in carotid artery smooth muscle. Holland, M., John Challiss, R.A., Standen, N.B., Boyle, J.P. Br. J. Pharmacol. (1999) [Pubmed]
  15. Block of the background K(+) channel TASK-1 contributes to arrhythmogenic effects of platelet-activating factor. Barbuti, A., Ishii, S., Shimizu, T., Robinson, R.B., Feinmark, S.J. Am. J. Physiol. Heart Circ. Physiol. (2002) [Pubmed]
  16. Cannabinoid agonist signal transduction in rat brain: comparison of cannabinoid agonists in receptor binding, G-protein activation, and adenylyl cyclase inhibition. Breivogel, C.S., Childers, S.R. J. Pharmacol. Exp. Ther. (2000) [Pubmed]
  17. Anandamide-induced relaxation of sheep coronary arteries: the role of the vascular endothelium, arachidonic acid metabolites and potassium channels. Grainger, J., Boachie-Ansah, G. Br. J. Pharmacol. (2001) [Pubmed]
  18. Differential mechanisms mediating depressor and diuretic effects of anandamide. Li, J., Wang, D.H. J. Hypertens. (2006) [Pubmed]
  19. Vanilloid receptors on capsaicin-sensitive sensory nerves mediate relaxation to methanandamide in the rat isolated mesenteric arterial bed and small mesenteric arteries. Ralevic, V., Kendall, D.A., Randall, M.D., Zygmunt, P.M., Movahed, P., Högestätt, E.D. Br. J. Pharmacol. (2000) [Pubmed]
  20. Differential effects of delta9-tetrahydrocannabinol and methanandamide in CB1 knockout and wild-type mice. Baskfield, C.Y., Martin, B.R., Wiley, J.L. J. Pharmacol. Exp. Ther. (2004) [Pubmed]
  21. Anandamide-induced depressor effect in spontaneously hypertensive rats: role of the vanilloid receptor. Li, J., Kaminski, N.E., Wang, D.H. Hypertension (2003) [Pubmed]
  22. Inhibition of C6 glioma cell proliferation by anandamide, 1-arachidonoylglycerol, and by a water soluble phosphate ester of anandamide: variability in response and involvement of arachidonic acid. Fowler, C.J., Jonsson, K.O., Andersson, A., Juntunen, J., Järvinen, T., Vandevoorde, S., Lambert, D.M., Jerman, J.C., Smart, D. Biochem. Pharmacol. (2003) [Pubmed]
  23. Anandamide is a partial agonist at native vanilloid receptors in acutely isolated mouse trigeminal sensory neurons. Roberts, L.A., Christie, M.J., Connor, M. Br. J. Pharmacol. (2002) [Pubmed]
  24. Cannabinoid penetration into mouse brain as determined by ex vivo binding. Petitet, F., Jeantaud, B., Bertrand, P., Imperato, A. Eur. J. Pharmacol. (1999) [Pubmed]
  25. Drug evaluations using neuronal networks cultured on microelectrode arrays. Morefield, S.I., Keefer, E.W., Chapman, K.D., Gross, G.W. Biosensors & bioelectronics. (2000) [Pubmed]
WikiGenes - Universities