The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Meiotic instability of human minisatellite CEB1 in yeast requires DNA double-strand breaks.

Minisatellites are tandemly repeated DNA sequences of 10-100-bp units. Some minisatellite loci are highly unstable in the human germ line, and structural analysis of mutant alleles has suggested that repeat instability results from a recombination-based process. To provide insights into the molecular mechanism of human minisatellite instability, we developed Saccharomyces cerevisiae strains carrying alleles of the most unstable human minisatellite locus, CEB1 (ref. 2). We observed that CEB1 is destabilized in meiosis, resulting in a variety of intra- and inter-allelic gains or losses of repeat units, similar to rearrangements described in humans. Using mutations affecting the initiation of recombination (spo11) or mismatch repair (msh2 pms1 ), we demonstrate that meiotic destabilization depends on the initiation of homologous recombination at nearby DNA double-strand break (DSBs) sites and involves a 'rearranged heteroduplex' intermediate. Most of the human and yeast data can be explained and unified in the context of DSB repair models.[1]

References

  1. Meiotic instability of human minisatellite CEB1 in yeast requires DNA double-strand breaks. Debrauwère, H., Buard, J., Tessier, J., Aubert, D., Vergnaud, G., Nicolas, A. Nat. Genet. (1999) [Pubmed]
 
WikiGenes - Universities