The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

MSH2  -  mismatch repair ATPase MSH2

Saccharomyces cerevisiae S288c

Synonyms: DNA mismatch repair protein MSH2, MutS protein homolog 2, O0935, YOL090W
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of MSH2


High impact information on MSH2

  • Our results suggest that PCNA functions directly in mispair recognition and that mispair recognition requires a higher-order complex containing proteins in addition to Msh2p-Msh6p [5].
  • Using mutations affecting the initiation of recombination (spo11) or mismatch repair (msh2 pms1 ), we demonstrate that meiotic destabilization depends on the initiation of homologous recombination at nearby DNA double-strand break (DSBs) sites and involves a 'rearranged heteroduplex' intermediate [6].
  • By examining the PMS patterns in yeast strains heterozygous for a mutant allele with a 26-base-pair insertion, we find that the repair of 26-base loops involves Msh2 (a DNA-mismatch repair protein) and Rad1 (a protein required for nucleotide-excision repair) [7].
  • In the yeast Saccharomyces cerevisiae, DNA mismatch repair requires the MSH2, MLH1, and PMS1 proteins [8].
  • Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair [9].

Biological context of MSH2

  • Removal of one nonhomologous DNA end during gene conversion by a RAD1- and MSH2-independent pathway [10].
  • We determined that MSH2, but not MLH1, is transcriptionally regulated during the cell-cycle like PMS1, and that rad3-1 does not increase the transcript levels for these genes in log phase cells [11].
  • Subsequently, the pms5-1 mutant allele was shown to be complemented by a plasmid borne yeast MSH2 gene, implying that it is an allele of MSH2 (PMS5) [12].
  • The products of the yeast mismatch repair genes MSH2 and MSH3 participate in the inhibition of genetic recombination between homeologous (divergent) DNA sequences [13].
  • MSH2 depresses human minisatellite frequency in meiotic cells of yeast [14].

Anatomical context of MSH2


Associations of MSH2 with chemical compounds

  • In one orientation of the homeologous gene pair, msh2 or msh3 mutations resulted in 17- and 9.6-fold elevations in recombination and the msh2 msh3 double mutant exhibited an 43-fold increase, implying that each MSH gene can function independently in trans to prevent homeologous recombination [16].
  • MSH2 and MSH6 are required for removal of adenine misincorporated opposite 8-oxo-guanine in S. cerevisiae [17].
  • Addition of ATP or the nonhydrolyzable ATPgammaS reduces binding of the MSH2-MSH6 complex to the DNA substrates markedly [18].
  • Saccharomyces cerevisiae MSH2-MSH3 and MSH2-MSH6 Complexes Display Distinct Requirements for DNA Binding Domain I in Mismatch Recognition [19].
  • Haploid msh2 mutants displayed an increase of 85-fold in the rate of spontaneous mutation to canavanine resistance [1].

Physical interactions of MSH2

  • Yeast Msh2p forms complexes with Msh3p and Msh6p to repair DNA mispairs that arise during DNA replication [20].
  • EXO1 interacts with MSH2 and MLH1 and has been proposed to be a redundant exonuclease that functions in mismatch repair (MMR) [21].
  • We propose that the inhibition of conversion by large inserts is due to recognition by the Msh2/Pms1 complex of mismatches created by intrastrand interactions in the heteroduplex loop [22].
  • The properties of purified heterodimers suggest that the ATPase active site in Msh6 binds ATP with higher affinity and hydrolyzes ATP faster and with higher efficiency than does the ATPase active site in Msh2 [23].

Regulatory relationships of MSH2

  • This reduction in heteroduplex rejection was suppressed in a mismatch repair-defective msh6 Delta strain and partially suppressed in an msh2 separation-of-function mutant [24].
  • The synthetic lethality between a group A mutant, pol30-104, and rad52 was almost completely suppressed by the inactivation of MSH2 [25].
  • In contrast to their similar antimutator roles, Pms1p consistently inhibited recombination to a lesser degree than did Msh2p [26].

Other interactions of MSH2

  • Of these, MLH1 and PMS1 are known to act in the MSH2-dependent pathway that repairs DNA mismatches [27].
  • The pol30-204 mutation altered an amino acid (C81R) in the monomer-monomer interface region and resulted in a partial general MMR defect and a defect in MSH2-MSH6 binding in vitro [28].
  • Using a chromosomally integrated inverted-repeat substrate, we also show that loss of both pso2 and exo1/msh2 reduces spontaneous homologous recombination rates [29].
  • The pol30-201 mutation altered an amino acid (C22Y) located on the surface of the PCNA trimer that slides over the DNA but did not cause a defect in MSH2-MSH6 binding in vitro [28].
  • These results indicate that MSH1 plays a role in repair or stability of mtDNA and MSH2 plays a role in repair of 4-bp insertion/deletion mispairs in the nucleus [1].

Analytical, diagnostic and therapeutic context of MSH2


  1. Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. Reenan, R.A., Kolodner, R.D. Genetics (1992) [Pubmed]
  2. Contributions by MutL homologues Mlh3 and Pms2 to DNA mismatch repair and tumor suppression in the mouse. Chen, P.C., Dudley, S., Hagen, W., Dizon, D., Paxton, L., Reichow, D., Yoon, S.R., Yang, K., Arnheim, N., Liskay, R.M., Lipkin, S.M. Cancer Res. (2005) [Pubmed]
  3. 'Saccharomyces cerevisiae MSH2/6 complex interacts with Holliday junctions and facilitates their cleavage by phage resolution enzymes. Marsischky, G.T., Lee, S., Griffith, J., Kolodner, R.D. J. Biol. Chem. (1999) [Pubmed]
  4. Hereditary non-polyposis colorectal cancer--morphologies, genes and mutations. Jass, J.R., Stewart, S.M., Stewart, J., Lane, M.R. Mutat. Res. (1994) [Pubmed]
  5. Proliferating cell nuclear antigen and Msh2p-Msh6p interact to form an active mispair recognition complex. Flores-Rozas, H., Clark, D., Kolodner, R.D. Nat. Genet. (2000) [Pubmed]
  6. Meiotic instability of human minisatellite CEB1 in yeast requires DNA double-strand breaks. Debrauwère, H., Buard, J., Tessier, J., Aubert, D., Vergnaud, G., Nicolas, A. Nat. Genet. (1999) [Pubmed]
  7. Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins. Kirkpatrick, D.T., Petes, T.D. Nature (1997) [Pubmed]
  8. MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast. Prolla, T.A., Pang, Q., Alani, E., Kolodner, R.D., Liskay, R.M. Science (1994) [Pubmed]
  9. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Marsischky, G.T., Filosi, N., Kane, M.F., Kolodner, R. Genes Dev. (1996) [Pubmed]
  10. Removal of one nonhomologous DNA end during gene conversion by a RAD1- and MSH2-independent pathway. Colaiácovo, M.P., Pâques, F., Haber, J.E. Genetics (1999) [Pubmed]
  11. A mutation in a Saccharomyces cerevisiae gene (RAD3) required for nucleotide excision repair and transcription increases the efficiency of mismatch correction. Yang, Y., Johnson, A.L., Johnston, L.H., Siede, W., Friedberg, E.C., Ramachandran, K., Kunz, B.A. Genetics (1996) [Pubmed]
  12. Mutagenesis of yeast MW104-1B strain has identified the uncharacterized PMS6 DNA mismatch repair gene locus and additional alleles of existing PMS1, PMS2 and MSH2 genes. Jeyaprakash, A., Welch, J.W., Fogel, S. Mutat. Res. (1994) [Pubmed]
  13. Differential effects of the mismatch repair genes MSH2 and MSH3 on homeologous recombination in Saccharomyces cerevisiae. Selva, E.M., Maderazo, A.B., Lahue, R.S. Mol. Gen. Genet. (1997) [Pubmed]
  14. Mechanisms of human minisatellite mutation in yeast. Cederberg, H., Rannug, U. Mutat. Res. (2006) [Pubmed]
  15. Expression of deoxyribonucleic acid repair enzymes during spermatogenesis in mice. Richardson, L.L., Pedigo, C., Ann Handel, M. Biol. Reprod. (2000) [Pubmed]
  16. Mismatch correction acts as a barrier to homeologous recombination in Saccharomyces cerevisiae. Selva, E.M., New, L., Crouse, G.F., Lahue, R.S. Genetics (1995) [Pubmed]
  17. MSH2 and MSH6 are required for removal of adenine misincorporated opposite 8-oxo-guanine in S. cerevisiae. Ni, T.T., Marsischky, G.T., Kolodner, R.D. Mol. Cell (1999) [Pubmed]
  18. ATP-dependent assembly of a ternary complex consisting of a DNA mismatch and the yeast MSH2-MSH6 and MLH1-PMS1 protein complexes. Habraken, Y., Sung, P., Prakash, L., Prakash, S. J. Biol. Chem. (1998) [Pubmed]
  19. Saccharomyces cerevisiae MSH2-MSH3 and MSH2-MSH6 Complexes Display Distinct Requirements for DNA Binding Domain I in Mismatch Recognition. Lee, S.D., Surtees, J.A., Alani, E. J. Mol. Biol. (2007) [Pubmed]
  20. Separation-of-function mutations in Saccharomyces cerevisiae MSH2 that confer mismatch repair defects but do not affect nonhomologous-tail removal during recombination. Studamire, B., Price, G., Sugawara, N., Haber, J.E., Alani, E. Mol. Cell. Biol. (1999) [Pubmed]
  21. exo1-Dependent mutator mutations: model system for studying functional interactions in mismatch repair. Amin, N.S., Nguyen, M.N., Oh, S., Kolodner, R.D. Mol. Cell. Biol. (2001) [Pubmed]
  22. (CA/TG) microsatellite sequences escape the inhibition of recombination by mismatch repair in Saccharomyces cerevisiae. Gendrel, C.G., Dutreix, M. Genetics (2001) [Pubmed]
  23. Evidence for sequential action of two ATPase active sites in yeast Msh2-Msh6. Drotschmann, K., Yang, W., Kunkel, T.A. DNA Repair (Amst.) (2002) [Pubmed]
  24. Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Sugawara, N., Goldfarb, T., Studamire, B., Alani, E., Haber, J.E. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  25. Saccharomyces cerevisiae pol30 (proliferating cell nuclear antigen) mutations impair replication fidelity and mismatch repair. Chen, C., Merrill, B.J., Lau, P.J., Holm, C., Kolodner, R.D. Mol. Cell. Biol. (1999) [Pubmed]
  26. Regulation of mitotic homeologous recombination in yeast. Functions of mismatch repair and nucleotide excision repair genes. Nicholson, A., Hendrix, M., Jinks-Robertson, S., Crouse, G.F. Genetics (2000) [Pubmed]
  27. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Flores-Rozas, H., Kolodner, R.D. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  28. Isolation and characterization of new proliferating cell nuclear antigen (POL30) mutator mutants that are defective in DNA mismatch repair. Lau, P.J., Flores-Rozas, H., Kolodner, R.D. Mol. Cell. Biol. (2002) [Pubmed]
  29. DNA interstrand cross-link repair in the Saccharomyces cerevisiae cell cycle: overlapping roles for PSO2 (SNM1) with MutS factors and EXO1 during S phase. Barber, L.J., Ward, T.A., Hartley, J.A., McHugh, P.J. Mol. Cell. Biol. (2005) [Pubmed]
  30. Functional genetic tests of DNA mismatch repair protein activity in Saccharomyces cerevisiae. Polaczek, P., Putzke, A.P., Leong, K., Bitter, G.A. Gene (1998) [Pubmed]
  31. The Saccharomyces cerevisiae Msh2 and Msh6 proteins form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs. Alani, E. Mol. Cell. Biol. (1996) [Pubmed]
  32. Biochemical characterization of the interaction between the Saccharomyces cerevisiae MSH2-MSH6 complex and mispaired bases in DNA. Marsischky, G.T., Kolodner, R.D. J. Biol. Chem. (1999) [Pubmed]
  33. The Saccharomyces cerevisiae Msh2 mismatch repair protein localizes to recombination intermediates in vivo. Evans, E., Sugawara, N., Haber, J.E., Alani, E. Mol. Cell (2000) [Pubmed]
  34. Evidence for short-patch mismatch repair in Saccharomyces cerevisiae. Coïc, E., Gluck, L., Fabre, F. EMBO J. (2000) [Pubmed]
WikiGenes - Universities