The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Nitric oxide and Drosophila development.

Mechanisms controlling the transition of precursor cells from proliferation to differentiation during organism development determine the distinct anatomical features of tissues and organs. NO may mediate such a transition since it can suppress DNA synthesis and cell proliferation. Inhibition of NOS activity in the imaginal discs of Drosophila larvae results in hypertrophy of tissues and organs of the adult fly, whereas ectopic overexpression of NOS has the reciprocal, hypotrophic, effect. Furthermore, NO production is crucial for the establishment of ordered neuronal connections in the visual system of the fly, indicating that NO affects the acquisition of the differentiated phenotype by the neural tissue. Increasing evidence points to a broad role that NO may play in animal development by acting as an essential negative regulator of precursor cell proliferation during tissue and organ morphogenesis.[1]


  1. Nitric oxide and Drosophila development. Enikolopov, G., Banerji, J., Kuzin, B. Cell Death Differ. (1999) [Pubmed]
WikiGenes - Universities