The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Nos  -  Nitric oxide synthase

Drosophila melanogaster

Synonyms: CG6713, DNOS, DNOS1, Dmel\CG6713, NOS, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Nos

  • These findings show that NOS activity is required for a robust innate immune response to gram-negative bacteria, NOS is induced by infection, and NO is sufficient to trigger response in the absence of infection [1].
  • Inhibition of nitric oxide synthase (NOS) increased larval sensitivity to gram-negative bacterial infection, and abrogated induction of the antimicrobial peptide Diptericin [1].
  • Inhibition of NOS activity in the imaginal discs of Drosophila larvae results in hypertrophy of tissues and organs of the adult fly, whereas ectopic overexpression of NOS has the reciprocal, hypotrophic, effect [2].
  • The heme and flavin-binding domains of Drosophila nitric oxide synthase (DNOS) were expressed in Escherichia coli using the expression vector pCW [3].
  • Reducing NO levels should be beneficial in sepsis, but NOS inhibitors have had a checkered history in animal models, and one such agent increased mortality in a clinical trial [4].
 

High impact information on Nos

  • Inhibition of NOS in larvae causes hypertrophy of organs and their segments in adult flies, whereas ectopic expression of NOS in larvae has the opposite effect [5].
  • Localization of the maternally synthesized nanos (nos) RNA to the posterior pole of the Drosophila embryo provides the source for a posterior-to-anterior gradient of Nos protein [6].
  • By contrast, misexpression of Nos protein at the anterior of the embryo prevents translation of the anterior morphogen Bicoid, suppressing head and thorax development [6].
  • Truncated isoforms suppress the antiproliferative action of DNOS1 in the eye imaginal disc by impacting the retinoblastoma-dependent pathway, yielding hyperproliferative phenotypes in pupae and adult flies [7].
  • The NOS inhibitor L-NAME, the NO scavenger PTIO, the sGC inhibitor ODQ, and methylene blue, which inhibits NOS and guanylate cyclase, each caused the disorganization of retinal projections and extension of photoreceptor axons beyond their normal synaptic layers in vitro [8].
 

Chemical compound and disease context of Nos

  • Full-length mouse nNOS proteins containing single-point mutations of Thr-315 and Asp-314 to alanine were produced in the Escherichia coli and baculovirus-insect cell expression systems [9].
 

Biological context of Nos

 

Anatomical context of Nos

 

Associations of Nos with chemical compounds

 

Other interactions of Nos

 

Analytical, diagnostic and therapeutic context of Nos

References

  1. Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila. Foley, E., O'Farrell, P.H. Genes Dev. (2003) [Pubmed]
  2. Nitric oxide and Drosophila development. Enikolopov, G., Banerji, J., Kuzin, B. Cell Death Differ. (1999) [Pubmed]
  3. Characterization of Drosophila nitric oxide synthase: a biochemical study. Sengupta, R., Sahoo, R., Mukherjee, S., Regulski, M., Tully, T., Stuehr, D.J., Ghosh, S. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  4. The nitric oxide scavenger cobinamide profoundly improves survival in a Drosophila melanogaster model of bacterial sepsis. Broderick, K.E., Feala, J., McCulloch, A., Paternostro, G., Sharma, V.S., Pilz, R.B., Boss, G.R. FASEB J. (2006) [Pubmed]
  5. Nitric oxide regulates cell proliferation during Drosophila development. Kuzin, B., Roberts, I., Peunova, N., Enikolopov, G. Cell (1996) [Pubmed]
  6. Translational regulation of nanos by RNA localization. Gavis, E.R., Lehmann, R. Nature (1994) [Pubmed]
  7. Regulation of multimers via truncated isoforms: a novel mechanism to control nitric-oxide signaling. Stasiv, Y., Kuzin, B., Regulski, M., Tully, T., Enikolopov, G. Genes Dev. (2004) [Pubmed]
  8. Nitric oxide and cyclic GMP regulate retinal patterning in the optic lobe of Drosophila. Gibbs, S.M., Truman, J.W. Neuron (1998) [Pubmed]
  9. Modulation of the remote heme site geometry of recombinant mouse neuronal nitric-oxide synthase by the N-terminal hook region. Iwasaki, T., Hori, H., Hayashi, Y., Nishino, T. J. Biol. Chem. (1999) [Pubmed]
  10. Molecular and biochemical characterization of dNOS: a Drosophila Ca2+/calmodulin-dependent nitric oxide synthase. Regulski, M., Tully, T. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  11. The Drosophila nitric-oxide synthase gene (dNOS) encodes a family of proteins that can modulate NOS activity by acting as dominant negative regulators. Stasiv, Y., Regulski, M., Kuzin, B., Tully, T., Enikolopov, G. J. Biol. Chem. (2001) [Pubmed]
  12. Neuropeptide stimulation of the nitric oxide signaling pathway in Drosophila melanogaster Malpighian tubules. Davies, S.A., Stewart, E.J., Huesmann, G.R., Skaer, N.J., Maddrell, S.H., Tublitz, N.J., Dow, J.A. Am. J. Physiol. (1997) [Pubmed]
  13. Nanos suppresses somatic cell fate in Drosophila germ line. Hayashi, Y., Hayashi, M., Kobayashi, S. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  14. Nanos and Pumilio are essential for dendrite morphogenesis in Drosophila peripheral neurons. Ye, B., Petritsch, C., Clark, I.E., Gavis, E.R., Jan, L.Y., Jan, Y.N. Curr. Biol. (2004) [Pubmed]
  15. Synthesis of the posterior determinant Nanos is spatially restricted by a novel cotranslational regulatory mechanism. Clark, I.E., Wyckoff, D., Gavis, E.R. Curr. Biol. (2000) [Pubmed]
  16. Inducible nitric oxide synthase: role of the N-terminal beta-hairpin hook and pterin-binding segment in dimerization and tetrahydrobiopterin interaction. Ghosh, D.K., Crane, B.R., Ghosh, S., Wolan, D., Gachhui, R., Crooks, C., Presta, A., Tainer, J.A., Getzoff, E.D., Stuehr, D.J. EMBO J. (1999) [Pubmed]
  17. Evidence for the ancient origin of the NF-kappaB/IkappaB cascade: its archaic role in pathogen infection and immunity. Wang, X.W., Tan, N.S., Ho, B., Ding, J.L. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  18. Crystal structure of dynein light chain TcTex-1. Williams, J.C., Xie, H., Hendrickson, W.A. J. Biol. Chem. (2005) [Pubmed]
  19. Drosophila arginase is produced from a nonvital gene that contains the elav locus within its third intron. Samson, M.L. J. Biol. Chem. (2000) [Pubmed]
  20. The crucial roles of Asp-314 and Thr-315 in the catalytic activation of molecular oxygen by neuronal nitric-oxide synthase. A site-directed mutagenesis study. Sagami, I., Shimizu, T. J. Biol. Chem. (1998) [Pubmed]
  21. Brugia malayi: localization of nitric oxide synthase in a lymphatic filariid. Pfarr, K.M., Fuhrman, J.A. Exp. Parasitol. (2000) [Pubmed]
 
WikiGenes - Universities