The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

In the neuronal cell line SH-SY5Y, oxidative stress-induced free radical overproduction causes cell death without any participation of intracellular Ca(2+) increase.

Adding the membrane-permeant oxidant tert-butylhydroperoxide (t-BOOH) to the incubation medium, in SH-SY5Y human neuroblastoma cells, induced a marked and progressive concentration-dependent (300, 500 and 1000 microM) increase of free radical production, as evaluated by the fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and of the intracellular Ca(2+) ion concentrations [Ca(2+)](i). The removal of extracellular Ca(2+) ions did not prevent t-BOOH-induced [Ca(2+)](i) elevation, whereas the intracellular Ca(2+) ion chelator 1,2-bis(o-aminophenoxy) ethane-N,N, N',N'-tetraacetic acid (BAPTA) (10 microM) was shown to be effective. Both t-BOOH-induced free radical formation and the [Ca(2+)](i) increase were completely prevented by the peroxyl scavenger alpha-tocopherol (50 microM). t-BOOH induced a time-dependent SH-SY5Y cell injury, monitored by a 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay (approximately 25% at 1 h, 50% at 3 h, 80% at 5 h) and by fluorescein diacetate (FDA)-propidium iodide (PI) fluorescent staining. The entity of t-BOOH-induced cell damage was the same both in the absence and in the presence of the intracellular Ca(2+) ion chelator BAPTA. By contrast, the peroxyl scavenger alpha-tocopherol (50 microM) completely prevented cell injury due to oxidative stress. Finally, superoxide dismutase (SOD) (500 ng/ml) caused a 30% reduction of t-BOOH-induced 2', 7'-dichlorofluorescein (DCF) fluorescence, whereas it did not modify the extent of cell injury produced by the oxidant. Collectively, the results of the present study demonstrated that in SH-SY5Y human neuroblastoma cells, the rise of [Ca(2+)](i) which occurs during oxidative stress is not involved in cell injury. Therefore, oxidative stress-induced cell death may be exclusively attributed to free radical overproduction.[1]


WikiGenes - Universities