Pervanadate-induced nuclear factor-kappaB activation requires tyrosine phosphorylation and degradation of IkappaBalpha. Comparison with tumor necrosis factor-alpha.
Tumor necrosis factor activates nuclear transcription factor kappaB (NF-kappaB) by inducing serine phosphorylation of the inhibitory subunit of NF-kappaB (IkappaBalpha), which leads to its ubiquitination and degradation. In contrast, pervanadate (PV) activates NF-kappaB and induces tyrosine phosphorylation of IkappaBalpha (Singh, S., Darney, B. G., and Aggarwal, B. B. (1996) J. Biol. Chem. 271, 31049-31054; Imbert, V., Rupec, R. A., Antonia, L., Pahl, H. L., Traenckner, E. B.-M., Mueller-Dieckmann, C., Farahifar, D., Rossi, B., Auderger, P., Baeuerle, P. A., and Peyron, J.-F. (1996) Cell 86, 787-798). Whether PV also induces IkappaBalpha degradation and whether degradation is required for NF-kappaB activation are not understood. We investigated the effect of PV-induced tyrosine phosphorylation on IkappaBalpha degradation and NF-kappaB activation. PV activated NF-kappaB, as determined by DNA binding, NF-kappaB-dependent reporter gene expression, and phosphorylation and degradation of IkappaBalpha. Maximum degradation of IkappaBalpha occurred at 180 min, followed by NF-kappaB-dependent IkappaBalpha resynthesis. N-Acetylleucylleucylnorlucinal, a proteasome inhibitor, blocked both IkappaBalpha degradation and NF-kappaB activation, suggesting that the IkappaBalpha degradation is required for NF-kappaB activation. PV did not induce serine phosphorylation of IkappaBalpha but induced phosphorylation at tyrosine residue 42. Unlike tumor necrosis factor ( TNF), PV did not induce ubiquitination of IkappaBalpha. Like TNF, however, PV induced phosphorylation and degradation of IkappaBalpha, and subsequent NF-kappaB activation, which could be blocked by N-tosyl-L-phenylalanine chloromethyl ketone, calpeptin, and pyrrolidine dithiocarbomate, suggesting a close link between PV-induced NF-kappaB activation and IkappaBalpha degradation. Overall, our studies demonstrate that PV activates NF-kappaB, which, unlike TNF, requires tyrosine phosphorylation of IkappaBalpha and its degradation.[1]References
- Pervanadate-induced nuclear factor-kappaB activation requires tyrosine phosphorylation and degradation of IkappaBalpha. Comparison with tumor necrosis factor-alpha. Mukhopadhyay, A., Manna, S.K., Aggarwal, B.B. J. Biol. Chem. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg