The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

calpeptin     benzylN-[(1S)-3-methyl-1-(1- oxohexan-2...

Synonyms: Cbz-Leu-Nle-H, AC1L9TJW, 117591-20-5, Benzyloxycarbonylleucyl-norleucinal
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of calpeptin


High impact information on calpeptin


Chemical compound and disease context of calpeptin


Biological context of calpeptin


Anatomical context of calpeptin


Associations of calpeptin with other chemical compounds

  • Thrombin-induced changes in morphology were assessed by confocal microscopy with fluorescein phalloidin and were not prevented by staurosporine or calpeptin [15].
  • While calpeptin did not affect cisplatin-induced modulation of Bak to its proapoptotic conformation, a dominant-negative mutant of MEKK1 (dnMEKK) inhibited Bak modulation. dnMEKK did not, however, block Bid cleavage [14].
  • In addition, the proteolysis of cortactin was abolished by treating platelets before but not after collagen stimulation with EGTA or calpeptin [21].
  • The proteolysis of these proteins was dependent on the presence of extracellular calcium and was specifically inhibited by pretreating platelets with the membrane-permeable calpain inhibitors calpeptin, E64d, and MDL 28,170, but not with the membrane-impermeable inhibitors leupeptin, E64, and calpastatin [22].
  • Consistent with this, our recent studies have demonstrated the existence of a protein tyrosine phosphatase (PTPase), sensitive to the dipeptide aldehyde calpeptin, acting upstream of RhoA [5] [23].

Gene context of calpeptin

  • Down-regulation of cyclin D1 and ER alpha by PPARgamma agonists was inhibited in cells cotreated with the proteasome inhibitors MG132 and PSII, but not in cells cotreated with the protease inhibitors calpain II and calpeptin [24].
  • Cell-permeable calpain inhibitors, including calpastatin and calpeptin, were sufficient to suppress RANKL-supported osteoclastogenesis based on decreased expression of the osteoclastogenic marker, matrix metalloproteinase 9, and the generation of tartrate-resistant acid phosphatase-positive multinucleated cells in both cell types [25].
  • Enzymatic inhibition of calpain by calpeptin precluded AIF release, demonstrating that proteolytic activity was required for release [26].
  • Proteasome inhibitors but not calpeptin prevented the catalase-mediated decrease of p53 content [27].
  • Cell permeable inhibitors of calpain, ALLnM, E64 and calpeptin that block Fas ligand-Fas-mediated death in T cells, blocked etoposide-induced nuclear damage, loss of mitochondrial integrity and cell lysis [28].

Analytical, diagnostic and therapeutic context of calpeptin

  • Moreover, inhibition of calpain by calpeptin prior to axotomy inhibits growth cone formation [29].
  • 5. Incubation of the cell culture for 3-5 days from the onset of induction of myotube formation with the membrane permeable protease inhibitor, calpeptin (50 microM) abolished the rise in [Ca2+]c in mdx myotubes upon exposure to hypo-osmotic shock [30].
  • In the present experiments, treatment of rats with one of the calpain inhibitors calpeptin or BN82270 inhibited protein breakdown in muscles from rats made septic by cecal ligation and puncture [31].
  • Myoglobinuria appeared immediately after reperfusion, and was also attenuated by calpeptin [32].
  • In the present study, the possible involvement of calpain in the lysis was investigated in a MNMS animal model employing a cell permeable calpain antagonist calpeptin [32].


  1. Role of calcium and calcium-activated proteases in CYP2E1-dependent toxicity in HEPG2 cells. Caro, A.A., Cederbaum, A.I. J. Biol. Chem. (2002) [Pubmed]
  2. Role of calpain in hypoxic inhibition of nitric oxide synthase activity in pulmonary endothelial cells. Su, Y., Block, E.R. Am. J. Physiol. Lung Cell Mol. Physiol. (2000) [Pubmed]
  3. Calpain activation in apoptosis of ventral spinal cord 4.1 (VSC4.1) motoneurons exposed to glutamate: calpain inhibition provides functional neuroprotection. Das, A., Sribnick, E.A., Wingrave, J.M., Del Re, A.M., Woodward, J.J., Appel, S.H., Banik, N.L., Ray, S.K. J. Neurosci. Res. (2005) [Pubmed]
  4. Peptide aldehyde inhibitors of bacterial peptide deformylases. Durand, D.J., Gordon Green, B., O'Connell, J.F., Grant, S.K. Arch. Biochem. Biophys. (1999) [Pubmed]
  5. Proteasome participates in the pathogenesis of ischemic acute renal failure in rats. Takaoka, M., Itoh, M., Hayashi, S., Kuro, T., Matsumura, Y. Eur. J. Pharmacol. (1999) [Pubmed]
  6. Real time imaging of calcium-induced localized proteolytic activity after axotomy and its relation to growth cone formation. Gitler, D., Spira, M.E. Neuron (1998) [Pubmed]
  7. Calpain activation in plasma membrane bleb formation during tert-butyl hydroperoxide-induced rat hepatocyte injury. Miyoshi, H., Umeshita, K., Sakon, M., Imajoh-Ohmi, S., Fujitani, K., Gotoh, M., Oiki, E., Kambayashi, J., Monden, M. Gastroenterology (1996) [Pubmed]
  8. Dephosphorylation of beta2-syntrophin and Ca2+/mu-calpain-mediated cleavage of ICA512 upon stimulation of insulin secretion. Ort, T., Voronov, S., Guo, J., Zawalich, K., Froehner, S.C., Zawalich, W., Solimena, M. EMBO J. (2001) [Pubmed]
  9. WIP is a chaperone for Wiskott-Aldrich syndrome protein (WASP). de la Fuente, M.A., Sasahara, Y., Calamito, M., Antón, I.M., Elkhal, A., Gallego, M.D., Suresh, K., Siminovitch, K., Ochs, H.D., Anderson, K.C., Rosen, F.S., Geha, R.S., Ramesh, N. Proc. Natl. Acad. Sci. U.S.A. (2007) [Pubmed]
  10. Ca2+-dependent and independent mitochondrial damage in HepG2 cells that overexpress CYP2E1. Caro, A.A., Cederbaum, A.I. Arch. Biochem. Biophys. (2002) [Pubmed]
  11. Calpain-mediated proteolytic cleavage of troponin I induced by hypoxia or metabolic inhibition in cultured neonatal cardiomyocytes. Kositprapa, C., Zhang, B., Berger, S., Canty, J.M., Lee, T.C. Mol. Cell. Biochem. (2000) [Pubmed]
  12. Left ventricular dysfunction after acute intracranial hypertension is associated with increased hydroxyl free radical production, cardiac ryanodine hyperphosphorylation, and troponin I degradation. Hall, S.R., Wang, L., Milne, B., Hong, M. J. Heart Lung Transplant. (2005) [Pubmed]
  13. Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Mitsiades, N., Mitsiades, C.S., Richardson, P.G., McMullan, C., Poulaki, V., Fanourakis, G., Schlossman, R., Chauhan, D., Munshi, N.C., Hideshima, T., Richon, V.M., Marks, P.A., Anderson, K.C. Blood (2003) [Pubmed]
  14. Calpain-mediated Bid cleavage and calpain-independent Bak modulation: two separate pathways in cisplatin-induced apoptosis. Mandic, A., Viktorsson, K., Strandberg, L., Heiden, T., Hansson, J., Linder, S., Shoshan, M.C. Mol. Cell. Biol. (2002) [Pubmed]
  15. Adducin in platelets: activation-induced phosphorylation by PKC and proteolysis by calpain. Gilligan, D.M., Sarid, R., Weese, J. Blood (2002) [Pubmed]
  16. Effects of thiol protease inhibitors on cell cycle and proliferation of vascular smooth muscle cells in culture. March, K.L., Wilensky, R.L., Roeske, R.W., Hathaway, D.R. Circ. Res. (1993) [Pubmed]
  17. Band 3 is an anchor protein and a target for SHP-2 tyrosine phosphatase in human erythrocytes. Bordin, L., Brunati, A.M., Donella-Deana, A., Baggio, B., Toninello, A., Clari, G. Blood (2002) [Pubmed]
  18. Evidence for a calpeptin-sensitive protein-tyrosine phosphatase upstream of the small GTPase Rho. A novel role for the calpain inhibitor calpeptin in the inhibition of protein-tyrosine phosphatases. Schoenwaelder, S.M., Burridge, K. J. Biol. Chem. (1999) [Pubmed]
  19. Enhancement of LFA-1-Mediated T Cell Adhesion by Human T Lymphotropic Virus Type 1 p12I1. Kim, S.J., Nair, A.M., Fernandez, S., Mathes, L., Lairmore, M.D. J. Immunol. (2006) [Pubmed]
  20. Calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes. Alderton, J.M., Steinhardt, R.A. J. Biol. Chem. (2000) [Pubmed]
  21. Proteolysis of platelet cortactin by calpain. Huang, C., Tandon, N.N., Greco, N.J., Ni, Y., Wang, T., Zhan, X. J. Biol. Chem. (1997) [Pubmed]
  22. Calpain regulation of cytoskeletal signaling complexes in von Willebrand factor-stimulated platelets. Distinct roles for glycoprotein Ib-V-IX and glycoprotein IIb-IIIa (integrin alphaIIbbeta3) in von Willebrand factor-induced signal transduction. Yuan, Y., Dopheide, S.M., Ivanidis, C., Salem, H.H., Jackson, S.P. J. Biol. Chem. (1997) [Pubmed]
  23. The protein tyrosine phosphatase Shp-2 regulates RhoA activity. Schoenwaelder, S.M., Petch, L.A., Williamson, D., Shen, R., Feng, G.S., Burridge, K. Curr. Biol. (2000) [Pubmed]
  24. Peroxisome proliferator-activated receptor gamma agonists induce proteasome-dependent degradation of cyclin D1 and estrogen receptor alpha in MCF-7 breast cancer cells. Qin, C., Burghardt, R., Smith, R., Wormke, M., Stewart, J., Safe, S. Cancer Res. (2003) [Pubmed]
  25. mu-Calpain regulates receptor activator of NF-kappaB ligand (RANKL)-supported osteoclastogenesis via NF-kappaB activation in RAW 264.7 cells. Lee, F.Y., Kim, D.W., Karmin, J.A., Hong, D., Chang, S.S., Fujisawa, M., Takayanagi, H., Bigliani, L.U., Blaine, T.A., Lee, H.J. J. Biol. Chem. (2005) [Pubmed]
  26. Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. Polster, B.M., Basañez, G., Etxebarria, A., Hardwick, J.M., Nicholls, D.G. J. Biol. Chem. (2005) [Pubmed]
  27. Catalase protects HepG2 cells from apoptosis induced by DNA-damaging agents by accelerating the degradation of p53. Bai, J., Cederbaum, A.I. J. Biol. Chem. (2003) [Pubmed]
  28. The role of calpain in caspase activation during etoposide induced apoptosis in T cells. Varghese, J., Radhika, G., Sarin, A. Eur. J. Immunol. (2001) [Pubmed]
  29. Critical calpain-dependent ultrastructural alterations underlie the transformation of an axonal segment into a growth cone after axotomy of cultured Aplysia neurons. Spira, M.E., Oren, R., Dormann, A., Gitler, D. J. Comp. Neurol. (2003) [Pubmed]
  30. Regulation of cytosolic calcium in skeletal muscle cells of the mdx mouse under conditions of stress. Leijendekker, W.J., Passaquin, A.C., Metzinger, L., Rüegg, U.T. Br. J. Pharmacol. (1996) [Pubmed]
  31. Treatment of rats with calpain inhibitors prevents sepsis-induced muscle proteolysis independent of atrogin-1/MAFbx and MuRF1 expression. Fareed, M.U., Evenson, A.R., Wei, W., Menconi, M., Poylin, V., Petkova, V., Pignol, B., Hasselgren, P.O. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2006) [Pubmed]
  32. Involvement of calpain in myonephropathic metabolic syndrome (MNMS). Tsuji, Y., Kambayashi, J., Shiba, E., Sakon, M., Kawasaki, T., Mori, T. European journal of vascular surgery. (1994) [Pubmed]
WikiGenes - Universities