A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane.
The Woronin body is a membrane-bound organelle that has been observed in over 50 species of filamentous fungi. However, neither the composition nor the precise function of the Woronin body has yet been determined. Here we purify the Woronin body from Neurospora crassa and isolate Hex1, a new protein containing a consensus sequence known as peroxisome-targeting signal-1 (PTS1). We show that Hex1 is localized to the matrix of the Woronin body by immunoelectron microscopy, and that a green fluorescent protein- (GFP-)Hex1 fusion protein is targeted to yeast peroxisomes in a PTS1- and peroxin-dependent manner. The expression of the HEX1 gene in yeast generates hexagonal vesicles that are morphologically similar to the native Woronin body, implying a Hex1-encoded mechanism of Woronin-body assembly. Deletion of HEX1 in N. crassa eliminates Woronin bodies from the cytoplasm and results in hyphae that exhibit a cytoplasmic-bleeding phenotype in response to cell lysis. Our results show that the Woronin body represents a new category of peroxisome with a function in the maintenance of cellular integrity.[1]References
- A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Jedd, G., Chua, N.H. Nat. Cell Biol. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg