The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Hyphae

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Hyphae

 

High impact information on Hyphae

  • Induction of specific proteins in hyphae of Achlya ambisexualis by the steroid hormone antheridiol [6].
  • However, cph1/cph1 strains can still form hyphae in liquid culture and in response to serum [7].
  • Expression of the two chaplin genes examined (chpE, chpH) depended on aerial hyphae formation but not sporulation, and egfp fusions showed their expression localized to aerial structures [8].
  • Inactivation of the N. crassa chs-1 gene by repeat-induced point mutation produced slow-growing progeny that formed hyphae with morphologic abnormalities [9].
  • Deletion of HEX1 in N. crassa eliminates Woronin bodies from the cytoplasm and results in hyphae that exhibit a cytoplasmic-bleeding phenotype in response to cell lysis [10].
 

Chemical compound and disease context of Hyphae

 

Biological context of Hyphae

  • However, unlike tup1 cells, nrg1 cells can form normal hyphae, generate chlamydospores at normal rates and grow at 42 degrees C. Transcript profiling of 2002 C.albicans genes reveals that CaNrg1 represses a subset of CaTup1-regulated genes, which includes known hypha-specific genes and other virulence factors [16].
  • Production of SapB commences during aerial mycelium formation and depends on most of the genes known to be required for the morphogenesis of aerial hyphae [17].
  • Similarly, tip-associated actin polarization in each hypha occurs before the events of the G(1)/S transition and persists throughout the cell cycle, whereas cell cycle-regulated actin assemblies come and go [18].
  • The ability to normally process Sap2 and form hyphae was restored upon transformation of null mutants with a KEX2-containing plasmid [19].
  • The correlation between protein synthesis and the nuclear division cycle in Neurospora crassa hyphae was studied by inhibiting protein accumulation by two different experimental procedures: (1) starvation for lysine in a lysine-requiring mutant (lys-1); and (2) addition of cycloheximide [20].
 

Anatomical context of Hyphae

 

Associations of Hyphae with chemical compounds

  • Nonfermentable substrates promote readily reversible yeastlike colonies from hypha cells: all the hypha cells spread on these substrates give rise to yeastlike colonies that revert to the mycelial phenotype when transferred to glucose medium [26].
  • The SC3p hydrophobin of Schizophyllum commune is a small hydrophobic protein (100-101 amino acids with eight cysteine residues) that self-assembles at a water/air interface and coats aerial hyphae with an SDS-insoluble protein membrane, at the outer side highly hydrophobic and with a typical rodlet pattern [27].
  • Levels of the transcripts in mature spores were equivalent to those found in hyphae grown in minimal medium containing nitrate [28].
  • Such inhibition can be completely reversed by putrescine or spermidine, confirming the essentiality of polyamines for growth of fungal hyphae [29].
  • The root hair elongative growth phase ("tip growth"), like that of other tip-growing systems such as pollen tubes, algal rhizoids, and fungal hyphae, is associated with an apex-high cytosolic free calcium ([Ca(2+)](c)) gradient generated by a local Ca(2+) influx at the tip [30].
 

Gene context of Hyphae

  • Here, we examined the contribution of Toll-like receptor (TLR)-2, TLR4, the adapter protein MyD88, and CD14 to signaling in response to the three forms of A. fumigatus encountered during human disease: resting conidia (RC), swollen conidia (SC), and hyphae (H) [31].
  • Murine PMN constitutively expressed CD80 molecules on both the surface and intracellularly; however, in both murine and human PMN, CD80 expression was differentially modulated upon interaction with Candida yeasts or hyphae in vitro as well as in infected mice [32].
  • TLR4-mediated proinflammatory signals are lost during germination of Candida blastoconidia into hyphae [33].
  • Candida hyphae stimulated production of interleukin-10 through TLR2-dependent mechanisms [33].
  • Involvement of CD14 and toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae [34].
 

Analytical, diagnostic and therapeutic context of Hyphae

References

  1. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: diverse roles for mitogen-activated protein kinase homologs in foliar pathogens. Lev, S., Sharon, A., Hadar, R., Ma, H., Horwitz, B.A. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  2. Assembly of the cell division protein FtsZ into ladder-like structures in the aerial hyphae of Streptomyces coelicolor. Schwedock, J., McCormick, J.R., Angert, E.R., Nodwell, J.R., Losick, R. Mol. Microbiol. (1997) [Pubmed]
  3. Enhanced cutaneous inflammatory reactions to Aspergillus fumigatus in a murine model of chronic granulomatous disease. Petersen, J.E., Hiran, T.S., Goebel, W.S., Johnson, C., Murphy, R.C., Azmi, F.H., Hood, A.F., Travers, J.B., Dinauer, M.C. J. Invest. Dermatol. (2002) [Pubmed]
  4. Strength of mid-logarithmic and stationary phase Saccharopolyspora erythraea hyphae during a batch fermentation in defined nitrate-limited medium. Stocks, S.M., Thomas, C.R. Biotechnol. Bioeng. (2001) [Pubmed]
  5. Hendersonula toruloidea and Scytalidium hyalinum. Review and update. Elewski, B.E., Greer, D.L. Archives of dermatology. (1991) [Pubmed]
  6. Induction of specific proteins in hyphae of Achlya ambisexualis by the steroid hormone antheridiol. Groner, B., Hynes, N., Sippel, A., Schutz, G. Nature (1976) [Pubmed]
  7. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Liu, H., Köhler, J., Fink, G.R. Science (1994) [Pubmed]
  8. The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Elliot, M.A., Karoonuthaisiri, N., Huang, J., Bibb, M.J., Cohen, S.N., Kao, C.M., Buttner, M.J. Genes Dev. (2003) [Pubmed]
  9. Chitin synthase 1 plays a major role in cell wall biogenesis in Neurospora crassa. Yarden, O., Yanofsky, C. Genes Dev. (1991) [Pubmed]
  10. A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Jedd, G., Chua, N.H. Nat. Cell Biol. (2000) [Pubmed]
  11. Occurrence of polysaccharide granules in sporulating hyphae of Streptomyces viridochromogenes. Braña, A.F., Manzanal, M.B., Hardisson, C. J. Bacteriol. (1980) [Pubmed]
  12. A novel transmembrane serine/threonine protein kinase gene from a rifamycin SV-producing amycolatopsis mediterranei U32. Zhang, W., Li, L., Jiang, W., Zhao, G., Yang, Y., Chiao, J. Eur. J. Biochem. (2000) [Pubmed]
  13. Iron metabolism and fungal infections in patients with haematological malignancies. Iglesias-Osma, C., Gonzalez-Villaron, L., San Miguel, J.F., Caballero, M.D., Vazquez, L., de Castro, S. J. Clin. Pathol. (1995) [Pubmed]
  14. Factors affecting vesicle formation and acetylene reduction (nitrogenase activity) in Frankia sp. CpI1. Tjepkema, J.D., Ormerod, W., Torrey, J.G. Can. J. Microbiol. (1981) [Pubmed]
  15. Monoclonal antibodies against a 97-kilodalton antigen from Aspergillus flavus. Hetherington, S.V., Henwick, S., Parham, D.M., Patrick, C.C. Clin. Diagn. Lab. Immunol. (1994) [Pubmed]
  16. NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. Murad, A.M., Leng, P., Straffon, M., Wishart, J., Macaskill, S., MacCallum, D., Schnell, N., Talibi, D., Marechal, D., Tekaia, F., d'Enfert, C., Gaillardin, C., Odds, F.C., Brown, A.J. EMBO J. (2001) [Pubmed]
  17. The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Kodani, S., Hudson, M.E., Durrant, M.C., Buttner, M.J., Nodwell, J.R., Willey, J.M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  18. Hyphal elongation is regulated independently of cell cycle in Candida albicans. Hazan, I., Sepulveda-Becerra, M., Liu, H. Mol. Biol. Cell (2002) [Pubmed]
  19. KEX2 influences Candida albicans proteinase secretion and hyphal formation. Newport, G., Agabian, N. J. Biol. Chem. (1997) [Pubmed]
  20. Control points in Neurospora crassa nuclear division cycle: different effects of the inhibition of protein accumulation. Martegani, E., Tomé, F., Trezzi, F. J. Cell. Sci. (1983) [Pubmed]
  21. Candida albicans Int1p interacts with the septin ring in yeast and hyphal cells. Gale, C., Gerami-Nejad, M., McClellan, M., Vandoninck, S., Longtine, M.S., Berman, J. Mol. Biol. Cell (2001) [Pubmed]
  22. N-cadherin mediates endocytosis of Candida albicans by endothelial cells. Phan, Q.T., Fratti, R.A., Prasadarao, N.V., Edwards, J.E., Filler, S.G. J. Biol. Chem. (2005) [Pubmed]
  23. Integrin and spectrin homologues, and cytoplasm-wall adhesion in tip growth. Kaminskyj, S.G., Heath, I.B. J. Cell. Sci. (1995) [Pubmed]
  24. Stimulation of neutrophil actin polymerization and degranulation by opsonized and unopsonized Candida albicans hyphae and zymosan. Kolotila, M.P., Diamond, R.D. Infect. Immun. (1988) [Pubmed]
  25. Evidence for expression of the C3d receptor of Candida albicans in vitro and in vivo obtained by immunofluorescence and immunoelectron microscopy. Kanbe, T., Li, R.K., Wadsworth, E., Calderone, R.A., Cutler, J.E. Infect. Immun. (1991) [Pubmed]
  26. Reversible and permanent effects of the carbon sources and various antibiotics on the morphology and metabolic properties of Ustilago cynodontis cells. Durieu-Trautmann, O., Tavlitzki, J. J. Cell Biol. (1975) [Pubmed]
  27. Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. Wösten, H.A., Schuren, F.H., Wessels, J.G. EMBO J. (1994) [Pubmed]
  28. Developmental regulation of the Aspergillus nidulans trpC gene. Yelton, M.M., Hamer, J.E., de Souza, E.R., Mullaney, E.J., Timberlake, W.E. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  29. Prevention of a plant disease by specific inhibition of fungal polyamine biosynthesis. Rajam, M.V., Weinstein, L.H., Galston, A.W. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  30. Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. Véry, A.A., Davies, J.M. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  31. Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. Mambula, S.S., Sau, K., Henneke, P., Golenbock, D.T., Levitz, S.M. J. Biol. Chem. (2002) [Pubmed]
  32. CD80+Gr-1+ myeloid cells inhibit development of antifungal Th1 immunity in mice with candidiasis. Mencacci, A., Montagnoli, C., Bacci, A., Cenci, E., Pitzurra, L., Spreca, A., Kopf, M., Sharpe, A.H., Romani, L. J. Immunol. (2002) [Pubmed]
  33. Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae. van der Graaf, C.A., Netea, M.G., Verschueren, I., van der Meer, J.W., Kullberg, B.J. Infect. Immun. (2005) [Pubmed]
  34. Involvement of CD14 and toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae. Wang, J.E., Warris, A., Ellingsen, E.A., Jørgensen, P.F., Flo, T.H., Espevik, T., Solberg, R., Verweij, P.E., Aasen, A.O. Infect. Immun. (2001) [Pubmed]
  35. SUMO modification of septin-interacting proteins in Candida albicans. Martin, S.W., Konopka, J.B. J. Biol. Chem. (2004) [Pubmed]
  36. Morphological changes induced by Naftifine, a new antifungal agent, in Trichophyton mentagrophytes. Meingassner, J.G., Sleytr, U., Petranyi, G. J. Invest. Dermatol. (1981) [Pubmed]
  37. Bilateral renal aspergillosis. Warshawsky, A.B., Keiller, D., Gittes, R.F. J. Urol. (1975) [Pubmed]
  38. Invasive aspergillosis in systemic lupus erythematosus. Gonzalez-Crespo, M.R., Gomez-Reino, J.J. Semin. Arthritis Rheum. (1995) [Pubmed]
 
WikiGenes - Universities