The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Neurospora


High impact information on Neurospora

  • vvd, a gene regulating light responses in Neurospora, encodes a novel member of the PAS/LOV protein superfamily [6].
  • One of these, SDE1, is a plant homolog of QDE-1 in Neurospora crassa that encodes an RNA-dependent RNA polymerase [7].
  • Thus, in both the phasing of dark expression and the response to light mPer1 is most similar to the Neurospora clock gene frq [8].
  • By fusing the encoding presequence of subunit 9 of the Neurospora ATPase to a restriction fragment containing the bI4 maturase coding sequence, we have constructed a hybrid gene that can be translated on yeast cytosolic ribosomes [9].
  • The group I intron in the Neurospora mitochondrial large rRNA gene is not self-splicing in vitro [10].

Chemical compound and disease context of Neurospora


Biological context of Neurospora


Anatomical context of Neurospora


Associations of Neurospora with chemical compounds


Gene context of Neurospora

  • We cloned, sequenced and physically mapped the MAS20 gene and found that the protein is homologous to the MOM19 import receptor from Neurospora crassa [27].
  • We isolated the TIM23 complex of Neurospora crassa [28].
  • Although some continuity in the chromosomal location of the MAT locus can be traced throughout hemiascomycete evolution and even to Neurospora, the gene content of the locus has changed with the loss of an HMG domain gene (MATa2) from the MATa idiomorph shortly after HO was recruited [29].
  • The remaining three residues, Trp-120, Leu-123, and Phe-124, are highly conserved between GCN4 and its Neurospora counterpart, cpc-1 [30].
  • Of particular interest is the comparable increase in a nuclease under the control of the RAD52 gene; this enzyme has been identified by the use of antibody raised against a similar enzyme from Neurospora crassa [31].

Analytical, diagnostic and therapeutic context of Neurospora


  1. The neurospora CYT-18 protein suppresses defects in the phage T4 td intron by stabilizing the catalytically active structure of the intron core. Mohr, G., Zhang, A., Gianelos, J.A., Belfort, M., Lambowitz, A.M. Cell (1992) [Pubmed]
  2. Spectroscopic and kinetic characterization of the bifunctional chorismate synthase from Neurospora crassa: evidence for a common binding site for 5-enolpyruvylshikimate 3-phosphate and NADPH. Kitzing, K., Macheroux, P., Amrhein, N. J. Biol. Chem. (2001) [Pubmed]
  3. Carotenoid desaturases from Rhodobacter capsulatus and Neurospora crassa are structurally and functionally conserved and contain domains homologous to flavoprotein disulfide oxidoreductases. Bartley, G.E., Schmidhauser, T.J., Yanofsky, C., Scolnik, P.A. J. Biol. Chem. (1990) [Pubmed]
  4. Rapid RNA sequencing: nucleases from Staphylococcus aureus and Neurospora crassa discriminate between uridine and cytidine. Krupp, G., Gross, H.J. Nucleic Acids Res. (1979) [Pubmed]
  5. Expression of a Neurospora crassa metallothionein and its variants in Escherichia coli. Romeyer, F.M., Jacobs, F.A., Brousseau, R. Appl. Environ. Microbiol. (1990) [Pubmed]
  6. The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Heintzen, C., Loros, J.J., Dunlap, J.C. Cell (2001) [Pubmed]
  7. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Dalmay, T., Hamilton, A., Rudd, S., Angell, S., Baulcombe, D.C. Cell (2000) [Pubmed]
  8. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Shigeyoshi, Y., Taguchi, K., Yamamoto, S., Takekida, S., Yan, L., Tei, H., Moriya, T., Shibata, S., Loros, J.J., Dunlap, J.C., Okamura, H. Cell (1997) [Pubmed]
  9. A mitochondrial RNA maturase gene transferred to the yeast nucleus can control mitochondrial mRNA splicing. Banroques, J., Delahodde, A., Jacq, C. Cell (1986) [Pubmed]
  10. Protein-dependent splicing of a group I intron in ribonucleoprotein particles and soluble fractions. Garriga, G., Lambowitz, A.M. Cell (1986) [Pubmed]
  11. Sequencing and overexpression of the Escherichia coli aroE gene encoding shikimate dehydrogenase. Anton, I.A., Coggins, J.R. Biochem. J. (1988) [Pubmed]
  12. Development of thermotolerance in Neurospora crassa by heat shock and other stresses eliciting peroxidase induction. Kapoor, M., Sreenivasan, G.M., Goel, N., Lewis, J. J. Bacteriol. (1990) [Pubmed]
  13. Activation of nit-1 nitrate reductase by W-formate dehydrogenase. Deaton, J.C., Solomon, E.I., Durfor, C.N., Wetherbee, P.J., Burgess, B.K., Jacobs, D.B. Biochem. Biophys. Res. Commun. (1984) [Pubmed]
  14. Glutamine biosynthesis and the utilization of succinate and glutamine by Rhizobium etli and Sinorhizobium meliloti. Encarnación, S., Calderón, J., Gelbard, A.S., Cooper, A.J., Mora, J. Microbiology (Reading, Engl.) (1998) [Pubmed]
  15. RNA splicing in neurospora mitochondria: self-splicing of a mitochondrial intron in vitro. Garriga, G., Lambowitz, A.M. Cell (1984) [Pubmed]
  16. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Tamaru, H., Selker, E.U. Nature (2001) [Pubmed]
  17. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme. Mohr, G., Caprara, M.G., Guo, Q., Lambowitz, A.M. Nature (1994) [Pubmed]
  18. The methylated component of the Neurospora crassa genome. Selker, E.U., Tountas, N.A., Cross, S.H., Margolin, B.S., Murphy, J.G., Bird, A.P., Freitag, M. Nature (2003) [Pubmed]
  19. Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase. Cogoni, C., Macino, G. Science (1999) [Pubmed]
  20. Structure and function of initiator methionine tRNA from the mitochondria of Neurospora crassa. Heckman, J.E., Hecker, L.I., Schwartzbach, S.D., Barnett, W.E., Baumstark, B., RajBhandary, U.L. Cell (1978) [Pubmed]
  21. Chloramphenicol-sensitive labelling of protein in microsomes of Neurospora crassa. Macklin, W.B., Meyer, D.J., Woodward, D.O., Erickson, S.K. Nature (1977) [Pubmed]
  22. Chitin synthase 1 plays a major role in cell wall biogenesis in Neurospora crassa. Yarden, O., Yanofsky, C. Genes Dev. (1991) [Pubmed]
  23. Structural studies of the vacuolar membrane ATPase from Neurospora crassa and comparison with the tonoplast membrane ATPase from Zea mays. Bowman, E.J., Mandala, S., Taiz, L., Bowman, B.J. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  24. Circadian periodicity a neurospora: alteration by inhibitors of cyclic AMP phosphodiesterase. Feldman, J.F. Science (1975) [Pubmed]
  25. Novel mechanisms controlling arginine metabolism in Neurospora. Davis, R.H., Weiss, R.L. Trends Biochem. Sci. (1988) [Pubmed]
  26. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. Cheng, J.C., Matsen, C.B., Gonzales, F.A., Ye, W., Greer, S., Marquez, V.E., Jones, P.A., Selker, E.U. J. Natl. Cancer Inst. (2003) [Pubmed]
  27. Functional cooperation of mitochondrial protein import receptors in yeast. Ramage, L., Junne, T., Hahne, K., Lithgow, T., Schatz, G. EMBO J. (1993) [Pubmed]
  28. Tim50, a novel component of the TIM23 preprotein translocase of mitochondria. Mokranjac, D., Paschen, S.A., Kozany, C., Prokisch, H., Hoppins, S.C., Nargang, F.E., Neupert, W., Hell, K. EMBO J. (2003) [Pubmed]
  29. Evolution of the MAT locus and its Ho endonuclease in yeast species. Butler, G., Kenny, C., Fagan, A., Kurischko, C., Gaillardin, C., Wolfe, K.H. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  30. The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids. Drysdale, C.M., Dueñas, E., Jackson, B.M., Reusser, U., Braus, G.H., Hinnebusch, A.G. Mol. Cell. Biol. (1995) [Pubmed]
  31. DNA polymerases, deoxyribonucleases, and recombination during meiosis in Saccharomyces cerevisiae. Resnick, M.A., Sugino, A., Nitiss, J., Chow, T. Mol. Cell. Biol. (1984) [Pubmed]
  32. Deficiency in mRNA splicing in a cytochrome c mutant of neurospora crassa: importance of carboxy terminus for import of apocytochrome c into mitochondria. Stuart, R.A., Neupert, W., Tropschug, M. EMBO J. (1987) [Pubmed]
  33. Site-directed mutagenesis of the cysteine residues in the Neurospora crassa plasma membrane H(+)-ATPase. Mahanty, S.K., Scarborough, G.A. J. Biol. Chem. (1996) [Pubmed]
  34. Monomers of the Neurospora plasma membrane H+-ATPase catalyze efficient proton translocation. Goormaghtigh, E., Chadwick, C., Scarborough, G.A. J. Biol. Chem. (1986) [Pubmed]
  35. Mapping tRNA structure in solution using double-strand-specific ribonuclease V1 from cobra venom. Lockard, R.E., Kumar, A. Nucleic Acids Res. (1981) [Pubmed]
  36. Three-dimensional structure of NADH: ubiquinone reductase (complex I) from Neurospora mitochondria determined by electron microscopy of membrane crystals. Leonard, K., Haiker, H., Weiss, H. J. Mol. Biol. (1987) [Pubmed]
WikiGenes - Universities