Evidence of an unusually long operator for the fur repressor in the aerobactin promoter of Escherichia coli.
Production of the siderophore aerobactin in Escherichia coli is transcriptionally metalloregulated through the iron-dependent binding of the Fur (ferric uptake regulator) to a large region (>100 base pairs) within the cognate promoter in the pColV-K30 plasmid. We show in this article that such an unusually long operator results from the specific addition of degenerate repeats 5'-NAT(A/T)AT-3' and not from a fortuitous occupation of the DNA adjacent to the primary binding sites by an excess of the repressor. Furthermore, the protection pattern revealed by DNase I and hydroxyl radical footprinting reflected a side-by-side oligomerization of the protein along an extended DNA stretch. This type of DNA-protein interactions is more like those observed in some eukaryotic factors and nucleoid-associated proteins than typical of specific prokaryotic regulators.[1]References
- Evidence of an unusually long operator for the fur repressor in the aerobactin promoter of Escherichia coli. Escolar, L., Pérez-Martín, J., de Lorenzo, V. J. Biol. Chem. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg