The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Tri-iodothyronine induces proliferation in cultured bovine thyroid cells: evidence for the involvement of epidermal growth factor-associated tyrosine kinase activity.

The effects of the tri-iodothyronine (T(3)) secreted by thyroid cells on the growth of the thyrocyte are poorly known. In this study we analyzed the effects of T(3) on the proliferation of bovine thyroid follicles in primary culture previously depleted of endogenous T(3). Cellular deoxiribonucleic acid (DNA) synthesis, determined by [(3)H]thymidine incorporation, was stimulated by T(3) (0.1-5.0 nM) for 24 h in a concentration-dependent fashion with a maximal effect at 1.0 nM T(3) (P<0.01). This T(3) action was time-dependent when assayed from 12 to 72 h. The induction of mitogenic activity was corroborated by the increase in proliferating cell nuclear antigen (PCNA) measured by Western blot analysis. PCNA increased after treatment with T(3) (0.1-5.0 nM) in a concentration-dependent manner. Since T(3) modifies the activity of growth factors whose actions are mainly mediated by tyrosine kinase (TK) activation in diverse cellular types, we assayed the effects of genistein, a general TK inhibitor, and tyrphostin A25, a specific epidermal growth factor (EGF)-receptor (EGFR)-dependent TK activity inhibitor, on the proliferative effects of T(3). The T(3)-induced [(3)H]thymidine incorporation was inhibited by both agents in a concentration-dependent manner. A significant increase in the total TK activity measured in cellular protein extracts was induced by 0.5 and 1.0 nM T(3) (P<0.001). Tyrosine phosphorylation of the EGFR was also stimulated by T(3) (P<0.001) with no change in the EGFR expression as determined by Western blot analysis. Both, the T(3)-stimulated [(3)H]thymidine incorporation and the TK activity were inhibited by a anti-mouse EGF antibody. These results lead us to propose that T(3) could operate as a proliferative agent in bovine thyroid cells through a mechanism involving an autocrine/paracrine EGF/EGFR-dependent regulation.[1]

References

 
WikiGenes - Universities