The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

LOC521832  -  epidermal growth factor

Bos taurus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of LOC521832

 

High impact information on LOC521832

 

Chemical compound and disease context of LOC521832

 

Biological context of LOC521832

  • Evaluation of [125I]-labeled PDGF and epidermal growth factor (EGF) binding revealed no effect of PUVA on the apparent number or affinity of PDGF binding sites present but did reveal a dose-dependent inhibition by PUVA of EGF binding [15].
  • This inhibition of EGF binding occurred increasingly at higher PUVA doses than the cell cycle inhibition and accordingly did not appear to represent a critical mechanism for the antiproliferative effect [15].
  • The following EGF-like repeat has a very pronounced sequence homology (10 consecutive residues identical) to one of the EGF-like units in the EGF precursor [16].
  • Vitamin K-dependent bovine protein S has been shown to contain a posttranslationally hydroxylated asparagine within a conserved sequence in three of its epidermal growth factor (EGF)-like domains [17].
  • We now show that, in protein S, this EGF-like repeat has one beta-hydroxyasparagine residue formed by hydroxylation of asparagine [16].
 

Anatomical context of LOC521832

 

Associations of LOC521832 with chemical compounds

 

Enzymatic interactions of LOC521832

 

Regulatory relationships of LOC521832

 

Other interactions of LOC521832

 

Analytical, diagnostic and therapeutic context of LOC521832

  • Western blots of cell extracts demonstrated binding of 125I-Factor IX at Mr approximately equal to 140,000 which was blocked by excess Factor IX, but not antisera to Factor VIII, von Willebrand factor, alpha 2-macroglobulin, or epidermal growth factor receptor [36].
  • The EGF-like domain, corresponding to residues 45-86 in bovine factor X, was obtained in more than 50% recovery, and was at least 98% homogeneous as judged by NH2-terminal sequence analysis [37].
  • Immunoprecipitation with anti-phosphotyrosine antibodies and immunoblotting with an antibody against extracellular signal-regulated kinase (ERK) indicated that in CSK cells, 14,15-EET failed to activate ERK1 and ERK2; however, EGF- and FBS-induced activation of ERKs was not different from that seen in Vector cells [38].
  • Bioassays indicated that none of the ingredients in the medium were contaminated with either epidermal growth factor or platelet-derived growth factor [39].
  • At 24 h after treatment epidermal growth factor (10 ng/ml), transforming growth factor-beta (1 ng/ml), whole bovine pituitary extract (70 micrograms/ml) and 12-O-tetradecanoylphorbol-13-acetate (TPA) (100 ng/ml) inhibited intercellular communication [40].

References

  1. Growth effects of regulatory peptides on human pancreatic cancer lines PANC-1 and MIA PaCa-2. Liehr, R.M., Melnykovych, G., Solomon, T.E. Gastroenterology (1990) [Pubmed]
  2. Epidermal growth factor inhibits growth of A431 human epidermoid carcinoma in serum-free cell culture. Barnes, D.W. J. Cell Biol. (1982) [Pubmed]
  3. Reduced growth-factor requirement of keloid-derived fibroblasts may account for tumor growth. Russell, S.B., Trupin, K.M., Rodríguez-Eaton, S., Russell, J.D., Trupin, J.S. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  4. Proliferation of human neuroblastomas mediated by the epidermal growth factor receptor. Ho, R., Minturn, J.E., Hishiki, T., Zhao, H., Wang, Q., Cnaan, A., Maris, J., Evans, A.E., Brodeur, G.M. Cancer Res. (2005) [Pubmed]
  5. Epidermal growth factor receptors and effect of epidermal growth factor on growth of human breast cancer cells in long-term tissue culture. Imai, Y., Leung, C.K., Friesen, H.G., Shiu, R.P. Cancer Res. (1982) [Pubmed]
  6. Activation of the beta 1 isozyme of phospholipase C by alpha subunits of the Gq class of G proteins. Taylor, S.J., Chae, H.Z., Rhee, S.G., Exton, J.H. Nature (1991) [Pubmed]
  7. Virus- and cell-encoded tyrosine protein kinases inactivate DNA topoisomerases in vitro. Tse-Dinh, Y.C., Wong, T.W., Goldberg, A.R. Nature (1984) [Pubmed]
  8. An endocrine approach to the control of epidermal growth: serum-free cultivation of human keratinocytes. Maciag, T., Nemore, R.E., Weinstein, R., Gilchrest, B.A. Science (1981) [Pubmed]
  9. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. Miki, H., Miura, K., Takenawa, T. EMBO J. (1996) [Pubmed]
  10. Atrial natriuretic peptide inhibits growth of hepatoblastoma (HEP G2) cells by means of activation of clearance receptors. Rashed, H.M., Sun, H., Patel, T.B. Hepatology (1993) [Pubmed]
  11. Tannic acid is an inhibitor of CXCL12 (SDF-1alpha)/CXCR4 with antiangiogenic activity. Chen, X., Beutler, J.A., McCloud, T.G., Loehfelm, A., Yang, L., Dong, H.F., Chertov, O.Y., Salcedo, R., Oppenheim, J.J., Howard, O.M. Clin. Cancer Res. (2003) [Pubmed]
  12. Pertussis toxin can distinguish the augmentary effect elicited by epidermal growth factor from that of phorbol ester on luteal adenylate cyclase activity. Budnik, L.T., Mukhopadhyay, A.K. Endocrinology (1993) [Pubmed]
  13. Suramin inhibits the growth of non-small-cell lung cancer cells that express the epidermal growth factor receptor. Fujiuchi, S., Ohsaki, Y., Kikuchi, K. Oncology (1997) [Pubmed]
  14. A specific and sensitive assay for gefitinib using the enzyme-linked immunosorbent assay in human serum. Saita, T., Fujito, H., Mori, M. Biol. Pharm. Bull. (2005) [Pubmed]
  15. 8-Methoxypsoralen and longwave ultraviolet irradiation are a novel antiproliferative combination for vascular smooth muscle. March, K.L., Patton, B.L., Wilensky, R.L., Hathaway, D.R. Circulation (1993) [Pubmed]
  16. beta-Hydroxyasparagine in domains homologous to the epidermal growth factor precursor in vitamin K-dependent protein S. Stenflo, J., Lundwall, A., Dahlbäck, B. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  17. Occurrence of beta-hydroxylated asparagine residues in non-vitamin K-dependent proteins containing epidermal growth factor-like domains. Przysiecki, C.T., Staggers, J.E., Ramjit, H.G., Musson, D.G., Stern, A.M., Bennett, C.D., Friedman, P.A. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  18. Control of proliferation of human vascular endothelial cells. Characterization of the response of human umbilical vein endothelial cells to fibroblast growth factor, epidermal growth factor, and thrombin. Gospodarowicz, D., Brown, K.D., Birdwell, C.R., Zetter, B.R. J. Cell Biol. (1978) [Pubmed]
  19. Differential regulation of inducible nitric oxide synthase by fibroblast growth factors and transforming growth factor beta in bovine retinal pigmented epithelial cells: inverse correlation with cellular proliferation. Goureau, O., Lepoivre, M., Becquet, F., Courtois, Y. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  20. Epidermal growth factor (urogastrone)-mediated phosphorylation of a 35-kDa substrate in human placental membranes: relationship to the beta subunit of the guanine nucleotide regulatory complex. Valentine-Braun, K.A., Northup, J.K., Hollenberg, M.D. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  21. Determination of cellular shape by the extracellular matrix and its correlation with the control of cellular growth. Gospodarowicz, D., Greenburg, G., Birdwell, C.R. Cancer Res. (1978) [Pubmed]
  22. The mitogenic signaling pathway but not the plasminogen activator-inducing pathway of basic fibroblast growth factor is mediated through protein kinase C in fetal bovine aortic endothelial cells. Presta, M., Maier, J.A., Ragnotti, G. J. Cell Biol. (1989) [Pubmed]
  23. Bovine parathyroid cells: cultures maintained for more than 140 population doublings. Brandi, M.L., Fitzpatrick, L.A., Coon, H.G., Aurbach, G.D. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  24. Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Hammond, S.L., Ham, R.G., Stampfer, M.R. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  25. Characterization of phosphotyrosyl-protein phosphatase activity associated with calcineurin. Chernoff, J., Sells, M.A., Li, H.C. Biochem. Biophys. Res. Commun. (1984) [Pubmed]
  26. Cloning and characterization of a novel Cdc42-associated tyrosine kinase, ACK-2, from bovine brain. Yang, W., Cerione, R.A. J. Biol. Chem. (1997) [Pubmed]
  27. Electric field-directed cell motility involves up-regulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin. Zhao, M., Dick, A., Forrester, J.V., McCaig, C.D. Mol. Biol. Cell (1999) [Pubmed]
  28. Epidermal growth factor stimulates ornithine decarboxylase activity in cultured mammalian keratinocytes. Fleckman, P., Langdon, R., McGuire, J. J. Invest. Dermatol. (1984) [Pubmed]
  29. Expression and action of transforming growth factor alpha in normal ovarian surface epithelium and ovarian cancer. Doraiswamy, V., Parrott, J.A., Skinner, M.K. Biol. Reprod. (2000) [Pubmed]
  30. Regulation of glucose transporter 1 (GLUT1) gene expression by epidermal growth factor in bovine corneal endothelial cells. Ishida, K., Yamashita, H., Katagiri, H., Oka, Y. Jpn. J. Ophthalmol. (1995) [Pubmed]
  31. Stimulation of insulin-like growth factor (IGF) binding protein-3 synthesis by IGF-I and transforming growth factor-alpha is mediated by both phosphatidylinositol-3 kinase and mitogen-activated protein kinase pathways in mammary epithelial cells. Sivaprasad, U., Fleming, J., Verma, P.S., Hogan, K.A., Desury, G., Cohick, W.S. Endocrinology (2004) [Pubmed]
  32. Identification of two epidermal growth factor-sensitive tyrosine phosphorylation sites of phospholipase C-gamma in intact HSC-1 cells. Wahl, M.I., Nishibe, S., Kim, J.W., Kim, H., Rhee, S.G., Carpenter, G. J. Biol. Chem. (1990) [Pubmed]
  33. Dimerization of the insulin-like growth factor II/mannose 6-phosphate receptor. Byrd, J.C., Park, J.H., Schaffer, B.S., Garmroudi, F., MacDonald, R.G. J. Biol. Chem. (2000) [Pubmed]
  34. A theoretical model for the Gla-TSR-EGF-1 region of the anticoagulant cofactor protein S: from biostructural pathology to species-specific cofactor activity. Villoutreix, B.O., Teleman, O., Dahlbäck, B. J. Comput. Aided Mol. Des. (1997) [Pubmed]
  35. Progression of esophageal carcinoma by loss of EGF-STAT1 pathway. Watanabe, G., Kaganoi, J., Imamura, M., Shimada, Y., Itami, A., Uchida, S., Sato, F., Kitagawa, M. Cancer journal (Sudbury, Mass.) (2001) [Pubmed]
  36. Identification of a factor IX/IXa binding protein on the endothelial cell surface. Rimon, S., Melamed, R., Savion, N., Scott, T., Nawroth, P.P., Stern, D.M. J. Biol. Chem. (1987) [Pubmed]
  37. Calcium binding to the isolated beta-hydroxyaspartic acid-containing epidermal growth factor-like domain of bovine factor X. Persson, E., Selander, M., Linse, S., Drakenberg, T., Ohlin, A.K., Stenflo, J. J. Biol. Chem. (1989) [Pubmed]
  38. Overexpression of C-terminal Src kinase blocks 14, 15-epoxyeicosatrienoic acid-induced tyrosine phosphorylation and mitogenesis. Chen, J.K., Capdevila, J., Harris, R.C. J. Biol. Chem. (2000) [Pubmed]
  39. Modification of MCDB 110 medium to support prolonged growth and consistent high cloning efficiency of diploid human fibroblasts. Ryan, P.A., Maher, V.M., McCormick, J.J. Exp. Cell Res. (1987) [Pubmed]
  40. Altered regulation of intercellular communication by epidermal growth factor, transforming growth factor-beta and peptide hormones in normal human keratinocytes. Madhukar, B.V., Oh, S.Y., Chang, C.C., Wade, M., Trosko, J.E. Carcinogenesis (1989) [Pubmed]
 
WikiGenes - Universities